Development in Photoanode Materials for High Efficiency Dye Sensitized Solar Cells

Stephanie Chai Tying Lau *, Jedol Dayou **, Coswald Stephen Sipaut*, Rachel Fran Mansa *‡

* Energy and Materials Research Group (EMRG), Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA.

** Energy, Vibration and Sound Research Group (e-VIBS), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA

(slct88@gmail.com, jed@ums.edu.my, cssums@gmail.com, rfmansa@ums.edu.my)

‡ Corresponding Author; Rachel Fran Mansa, Tel: +60 88320000, Fax:+60 88320286, rfmansa@ums.edu.my

Received: 30.06.2014 Accepted:29.08.2014

Abstract- Dye-sensitized solar cells (DSSC) have been extensively studied due to their promising potential for high efficiency, low production cost and eco-friendly production. The photoanode is one of the main components in DSSCs which determines its performance. The main issues facing in DSSCs are the charge recombination and low light harvesting capacity. Conventional TiO$_2$ nanoparticles with large surface area has low light scattering ability and low electron transport rate while one dimensional nanostructures have high electron transport rate and good light scattering ability but has a low surface area. Different approaches such as nanocomposite, light scattering layer and hierarchical structures to improve performance of 1D DSSCs are discussed. Besides that, works done on the optimization of TiO$_2$ photoanode in cobalt based DSSC is also discussed. Additionally, doping of TiO$_2$ to improve the properties of TiO$_2$ and studies on alternative photoanode materials which involved the application of band gap engineering are discussed to further improve the performance of DSSCs.

Keywords- Dye Sensitized Solar Cells; Photoanode; Charge recombination; Light harvesting.

1. Introduction

With the growing demand for sustainable energy sources, dye sensitized solar cells (DSSCs) have been intensively studied as potential alternatives for the next generation solar cells due to their low production cost, relatively high power conversion efficiency (PCE) and eco-friendly production when compared with silicon solar cells [1-4].

DSSC was first reported by Gratzel and coworkers in 1991[1]. Typically, DSSC comprised of a photoanode with sensitizer attached on the surface of the wide band gap semiconductor layer coated on transparent conductive glass (TCO), an iodine based redox-coupled electrolyte and a counter electrode of TCO coated with a platinum layer [1, 5, 6]. To date, a PCE up to 12% has been reported by using the cobalt electrolyte and porphyrin sensitized TiO$_2$ photoanode [7, 8].

The photoanode which is one of the main components in DSSCs, is usually fabricated using photoanode materials such as TiO$_2$ due to their large surface area to volume ratios [1, 7, 9]. However, the conversion efficiency of TiO$_2$ nanoparticles-based DSSCs was limited by the slow transportation of electrons through the randomly arranged nanoparticles as well as the energy losses caused by the recombination [10, 11].

In recent years, many attempts were made to overcome the limitations by improving or varying the structure and morphology as well as the surface properties of the photoanode materials. In this paper, we review the development of photoanode materials in the dye sensitized solar cells to improve the overall power conversion efficiency of the DSSC. The main findings and limitations of each approach are discussed for further development of high efficiency dye sensitized solar cell.

2. Operating Principle of DSSC

DSSCs works based on the photoinjection of electrons from sensitizer (Pathway 1, Figure 1) into the conduction band (E_c) of metal oxide semiconductor (Pathway 2, Figure 1) upon irrigation by sunlight. Subsequently, the excited sensitizer is reduced back to the ground state by electrons donation from the iodide/triiodide redox couples in the electrolyte (Pathway 3, Figure 1). Regeneration of iodide ions, which are oxidized to triiodide in this reaction is achieved by electrons transferred from the counter electrode (Pathway 4, Figure 1). The circuit is completed through the
external load. However, recombination reaction may occur during the process. The injected electrons in the conduction band of semiconductor can recombine with either the excited sensitizer or the oxidized form of the iodide electrolyte as shown in fig.1 (Pathway 5 and 6) [12].

![Fig. 1. Schematic energy diagram and operating principle of DSSC. Adapted from [Source: 13].](image)

The performance of a DSSC depends on the energy levels of the component (sensitizer, photoanode and electrolyte) in DSSC. The energy difference between the highest occupied molecular orbital, HOMO and the lowest unoccupied molecular orbital, LUMO of the sensitizer (ΔE₁) will determine the amount of photocurrent obtained in DSSC. The maximum open circuit voltage of DSSC, on the other hand depends on the energy difference between the Fermi level (maximum energy that any electron may possess at absolute zero temperature) [14] and electrolyte redox potential (ΔE₂). For efficient electron injection, the energy level of the LUMO must be sufficiently high (i.e., >0.2 eV) in energy (moving upward in the energy level axis) with respect to the Eₘ of photoanode. The HOMO level of the sensitizer must be sufficiently low in energy (moving downward in the energy level axis) than the redox potential of the I/I₃ redox electrolyte for efficient regeneration of oxidized dye [13].

The conversion efficiency of the solar cell, η is determined by its current–voltage characteristics, specifically the open-circuit photovoltage (Vₘ), the photogenerated current density measured under short-circuit conditions (Jₘ), light irradiance (Iₒ) and the fill factor of the cell (FF), which depends on the series resistances and on the shunt resistances in the cell [15]. The short-circuit photocurrent (Jₘ) is essentially related to the amount of sunlight harvested in the visible part of the solar spectrum by the sensitizer. The open-circuit voltage (Vₘ) is related to the energy difference between the quasi-Fermi level of electrons in the semiconductor and the chemical potential of the redox mediator in the electrolyte. The related equation under standard illumination is shown in equation (1) [15-17].

\[\eta = \frac{(J_{sc} \times V_{oc} \times FF)}{I_{o}} \]

3. Photoanode Materials in DSSCs

In general, a photoanode material is composed of metal oxide semiconductor which has high surface area for sufficient dye adsorption, highly porous for effective mass transport by diffusion and a suitable band gap that matches with the sensitizer for effective electron injection and fast electron transport. The combined improvements in this factor contribute to a higher charge-collection efficiency [18-22].

Wide band gap metal oxide semiconductor (Eₘ > 3eV) such as TiO₂, ZnO, SnO₂ and Nb₂O₅ have been commonly used as photoanode materials due to their good stability against photocorrosion (transparent to the major part of the solar spectrum) and good electronic properties [23-26]. Photocorrosion which caused by the oxidation of holes (generated through band gap excitation) with the redox electrolytes may affect the performance of the semiconductor.

The efficiency of the DSSCs fabricated with various photoanode materials is shown in Table 1. At present, TiO₂ nanoparticle which gives the highest recorded efficiencies (12.3 %) has been to be the best photoanode material in DSSCs [7, 27]. Moreover, TiO₂ is a low cost, widely available, non-toxic and biocompatible material. It has been used in health care products as well as domestic applications such as paint pigmentation [28].

On the other hand, ZnO which has such a similar conduction band edge and working function as TiO₂, but with the higher carrier mobility than TiO₂ was considered as a promising photoanode of DSSCs. However, the instability of ZnO in the acidic environment and formation of dye aggregates deteriorates its performance [29]. Some other semiconductor materials, such as Zn₂SnO₄ [30], WO₃ [31], SrTiO₃ [32], have been applied to the electrodes for DSCs. However, the efficiency of these DSCs still cannot compete with TiO₂-based DSCs.

Table 1. Comparison in performance of DSSCs with different photoanode materials

<table>
<thead>
<tr>
<th>Photoanode material</th>
<th>Band gap (eV)</th>
<th>η (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>3.23</td>
<td>12.3</td>
<td>[7]</td>
</tr>
<tr>
<td>ZnO</td>
<td>3.3</td>
<td>5.60</td>
<td>[29]</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>3.49</td>
<td>5.00</td>
<td>[25]</td>
</tr>
<tr>
<td>Zn₂SnO₄</td>
<td>3.7</td>
<td>3.70</td>
<td>[30]</td>
</tr>
<tr>
<td>SrTiO₃</td>
<td>3.2</td>
<td>1.80</td>
<td>[32]</td>
</tr>
<tr>
<td>WO₃</td>
<td>2.6-3.0</td>
<td>0.75</td>
<td>[31]</td>
</tr>
<tr>
<td>SnO₂</td>
<td>3.6</td>
<td>0.30</td>
<td>[33]</td>
</tr>
</tbody>
</table>

Typically, TiO₂ exists in three crystalline forms which are rutile with energy band, Eₘ of 3.05 eV, anatase with Eₘ of 3.23 eV and brookite with Eₘ of 3.26 eV. The anatase TiO₂ provides a higher surface area for dye loading and a higher electron diffusion coefficient than the rutile nanoparticle photoanode. However, brookite is difficult to produce and is therefore not considered in the DSSC application [34, 35]. Therefore, the anatase TiO₂ nanoparticle is widely used as the main component of the photoanode in DSSCs.
4. The Main Issues Affecting the Performance of TiO₂ based DSSC

Conventional TiO₂ photoanode film usually exhibits high transparency and weak light scattering due to the nanometer particle size, resulting in poor light-harvesting efficiency (LHE). Furthermore, the slow electron transport rate and low electron mobility of TiO₂ nanoparticles also leads to charge recombination in TiO₂ based DSSC. Recently, mass transport issues which causing charge recombination in cobalt electrolyte based DSSC has been raised up. TiO₂ photoanode film prepared in conventional method is no longer suitable for cobalt based DSSC which reported highest PCE recently[7]. In this section, issues on light harvesting efficiency and charge recombination in TiO₂ based DSSC are discussed.

4.1 Light Harvesting Efficiency

As discussed in Section 3, conventional TiO₂ nanoparticles (10-20nm) which has high specific surface area (50 -100 m²/g) has been used in most DSSC. However, TiO₂ nanoparticles which has large surface area usually have low light-scattering ability. The particle size (20nm) which is smaller than the wavelength of visible light (400 nm) allows transmittance of most of the visible light before being absorbed by the photosensitizer. This may lead to low light harvesting efficiency [36, 37].

To tackle this issue, the concept of the bilayer structure with a scattering layer made of TiO₂ large particle with several hundred nanometers in size as the overlayer has been proposed. This bilayer structure could enhance the LHE by confining the incident light within the photoanode via scattering or diffracting it backward [38-41]. However, the introduction of such large particles would reduce the dye-loading capacity of the photoanode due to the decrease of the specific surface area, and thus leading to the decrease of the photocurrent, to some extent. Thus, new multifunctional TiO₂ photoanode materials, offering both a good capability for light scattering and a high specific surface area for dye loading, should be synthesized for application to the DSSCs [41].

4.2 Charge Recombination

A conventional TiO₂ nanoparticle comes with numerous defects (usually located at the TiO₂/electrolyte interface, in the bulk of the TiO₂ particles, or at grain boundaries) and surface states (the energy states generated below the conduction band of TiO₂ nanoparticles) which limits the electron transportation. Figure 2 shows the electron transportation path in TiO₂ nanoparticles. As the electron diffused within the TiO₂ network via hopping mechanism, this defect in the TiO₂ nanoparticles and surface state will definitely serve as trap centers to retard electron transportation. Once the electron being trapped, it may undergo recombination reaction with the oxidized sensitizer or oxidized iodide in DSSC. Surface treatment of TiO₂ nanoparticles such as TiCl₄ treatment (formed a thin blocking layer on the photoanode surface) and TiO₂ core shell structure (additional energy barrier layer coated on surface of TiO₂ nanoparticle) was often performed to suppress charge recombination and facilitate charge transport [34, 42-45].

Besides that, one dimensional (1D) nanostructures such as nanowires, nanotube and nanorods which has excellent electron transport and light scattering ability have been studied as photoanode materials in DSSC to reduce charge recombination [46-48]. However, DSSC with this configuration shows lower efficiency (9%) compared to the TiO₂ nanoparticle film (12%) due to its low internal surface area leads to insufficient dye adsorption, and therefore low LHE. Table 2 shows the performance of TiO₂ 1D nanostructures compared to the conventional TiO₂ nanoparticle. Until now, it is still remain challenge to improve the electron transport and light scattering abilities without sacrificing its internal surface area.

Table 2. Performance of TiO₂ 1D nanostructures based on highest efficiency

<table>
<thead>
<tr>
<th>1D nanostructures</th>
<th>Efficiency, %</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂ nanowire</td>
<td>9.33</td>
<td>[49]</td>
</tr>
<tr>
<td>TiO₂ nanorod</td>
<td>9.00</td>
<td>[50]</td>
</tr>
<tr>
<td>TiO₂-nanotube arrays</td>
<td>9.1</td>
<td>[51]</td>
</tr>
<tr>
<td>TiO₂ nanoparticle</td>
<td>12.3</td>
<td>[7]</td>
</tr>
</tbody>
</table>

Apart from that, DSSC based on cobalt electrolyte which had achieved higher PCE compared to the iodide based DSSC also suffered from recombination issues. The photovoltaic performance of DSSC based on electrolytes consisting cobalt complexes is constrained by mass transport limitations of the mediator. In this case, the thickness and the porosity of the photoanode was found to be very crucial. Conventional TiO₂ nanoparticles with pore size of 20 nm allows effective mass transport and electrolyte penetration in iodide based DSSC but not in the case of cobalt based DSSC. This increases the risk of charge recombination. Thus, TiO₂ film porosity should be optimized to enhance the performance of cobalt based DSSC.

5. Development of TiO₂ Morphology in High Efficiency DSSC

As has been discussed before, the main issues facing in conventional TiO₂ nanoparticles based DSSC are high charge recombination and low LHE. Introduction of light scattering layer of large TiO₂ particles increase the LHE but also reduce the surface area for dye loading. 1D TiO₂ nanostructures has excellent electron transport to reduce charge recombination and light scattering abilities for excellent LHE. However, its performance was limited by the low surface area causing poor dye loading. Thus, a photoanode materials with high surface area, fast electron transport and good light scattering ability is needed for high efficiency DSSC.

Recent development in TiO₂ photoanode materials focused on solving surface area limitations in 1D nanostructures by introducing nanocomposite and hierarchical structures in DSSC. Besides that, alternative scattering layer which include various nanostructures has been studied to substitute the conventional large particle
TiO$_2$ scattering layer. Therefore, in this section, development in TiO$_2$ photoanode materials which is divided into nanocomposite, hierarchical structure and light scattering layer will be discussed. Besides that, works done in optimizing TiO$_2$ photoanode for application in coalt based DSSC.

5.1 Nanocomposite

As discussed in Section 4.1, 1D TiO$_2$ nanostructures suffer from low internal surface area which caused the poor dye loading and thereby lower performance compare to the TiO$_2$ nanoparticle films. Mixing one-dimensional materials with the nanoparticles has been a successful approach in improving the surface area for dye loading and thus, device performance [52, 53]. Besides that, highly electrically conductive carbon materials, such as carbon nanotubes (CNTs) [58], and graphene [54] was incorporated into TiO$_2$ to improve the charge collection efficiency [55]. Table 3 shows the performance of TiO$_2$ nanocomposite with different materials.

Table 3. Performance of TiO$_2$ nanocomposite (NC) in DSSC

<table>
<thead>
<tr>
<th>Nanomaterial/nanoparticle (NP)</th>
<th>Efficiency (%) of NC/NP</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$ nanotube/2% NP</td>
<td>8.43/5.01</td>
<td>[56]</td>
</tr>
<tr>
<td>TiO$_2$ nanorod/NP</td>
<td>7.12/5.82</td>
<td>[57]</td>
</tr>
<tr>
<td>TiO$_2$ nanowire/NP</td>
<td>3.8/2.45</td>
<td>[58]</td>
</tr>
<tr>
<td>0.025wt MWCNT/TiO$_2$ NP</td>
<td>10.29/6.31</td>
<td>[18]</td>
</tr>
<tr>
<td>1%wt graphene/ TiO$_2$ NP</td>
<td>6.86/5.98</td>
<td>[54]</td>
</tr>
</tbody>
</table>

From Table 3, the blending and mixing of 1D nanostructures with nanoparticles showed an improved efficiency compared to the bare TiO$_2$ nanoparticles. TiO$_2$-MWCNT (Multiwall Carbon Nanotube) nanocomposite shows the highest efficiency of 10.29% and highest increment due to the unique electrical properties of CNT. CNT not only have a large electrons-storage capacity, but also show electronic conductivity similar to that of metals. Besides that, incorporation of graphene into the TiO$_2$ matrix also enhance electron transport while reduce charge recombination. However, recombination reaction may happen in this monolayer structure which affects the performance. Furthermore, single layer film cannot harvest light well due to its shorter electron path.

5.2 Light Scattering Layer

In order to improve light scattering and dye loading simultaneously, bilayer structure with one dimensional material overlayer has been proposed to replace the conventional TiO$_2$ large particles scattering layer which has low dye loading ability together with TiO$_2$ nanoparticles as the under-layer [59, 60]. Table 4 shows the effect of light scattering overlayer on the performance of double layer DSSCs.

Table 4. Effect of light scattering overlayer on the performance of double layer DSSCs

<table>
<thead>
<tr>
<th>Light Scattering layer (SC)</th>
<th>Underlayer</th>
<th>J_{sc} (mAm$^{-2}$) with SC (without SC)</th>
<th>η (%) with SC (without SC)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow spherical TiO$_2$</td>
<td>TiO$_2$ Nanoparticle</td>
<td>15.8(12.5)</td>
<td>9.43(7.79)</td>
<td>[36]</td>
</tr>
<tr>
<td>400 nm-sized TiO$_2$</td>
<td>TiO$_2$ Nanoparticle</td>
<td>14.6(12.5)</td>
<td>8.96(7.79)</td>
<td>[36]</td>
</tr>
<tr>
<td>TiO$_2$ beads</td>
<td>TiO$_2$ Nanoparticle</td>
<td>15.47(13.25)</td>
<td>8.84(7.38)</td>
<td>[61]</td>
</tr>
<tr>
<td>400-nm TiO$_2$</td>
<td>TiO$_2$ Nanoparticle</td>
<td>14.56(13.25)</td>
<td>7.87(7.38)</td>
<td>[61]</td>
</tr>
</tbody>
</table>

From Table 4, the highest conversion efficiency of 9.43% was being achieved after hollow spherical TiO$_2$ was introduced as the scattering layer. When comparing the photovoltaic performance of hollow spherical TiO$_2$, overlayer and 400 nm-diameter TiO$_2$ overlayer, hollow spherical TiO$_2$ overlayer shows a higher J_{sc}. The TiO$_2$ hollow spherical particles are believed to be able to adsorb dye efficiently and has good light scattering ability compared to the commonly used which only provide light scattering ability.

Besides that, DSSC prepared with the beads as a scattering layer have also shown similar result. This shows that bilayer structured photoanodes with nanocrystalline aggregates as light-scattering particles is a promising approach to enhance the efficiency of DSSCs. However, the increase in thickness with the use of multilayer structure films may lead to the higher recombination rate.

5.3 Hierarchical Structures

Hierarchical structures such as spherical, quasi-1D or 1D micro/nanoscale aggregates that could function as light scattering centers without sacrificing the internal surface and exhibit better electron transport properties has attracted much interest [62]. Hierarchically structured materials usually consists of assemblies of small building blocks, such as nanoparticles, nanorods, nanowires, nanoplates, etc which is small in size so that high surface area can be retained in the new photoanode film, leading to a high load of the dye molecules [12]. Table 5 shows the performance of different nanostructured TiO$_2$ electrodes in DSSCs.
From the table, we have demonstrated that the photoanode derived from spherical nanoparticle aggregates could generate efficiencies comparable to or even higher than those made with TiO\textsubscript{2} nanoparticles due to their ability to generate effective light scattering without sacrificing internal surface area, the facilitation of electrolyte diffusion through the relatively open structure and the improvement of electron transport resulting from compact interconnection of nanoparticles.

As shown in the table, DSSC with TiO\textsubscript{2} sphere assemble by the nanorods and nanoparticle achieved highest increment compared to the other spherical TiO\textsubscript{2} assemble by TiO\textsubscript{2} nanoparticles. This may due to its superior light scattering ability which contributed to the increase in the light harvesting efficiency. However, its poor contact with the FTO glass which leaves large uncovered space on FTO glass may lead to a higher interface resistance. Therefore, to obtain a higher efficiency, combination of hierarchical structure layer and nanoparticles which has good contact with FTO glass within one film electrode is a promising approach.

5.4 Optimization of TiO\textsubscript{2} Photoanode Materials for Cobalt Based DSSC

Recently, efficiencies of up to 12.3% have been obtained in DSSC employing cobalt based electrolyte [7]. However, optimization of conventional TiO\textsubscript{2} is pivotal to achieve high performance in cobalt based DSSC. Previous investigations have suggested that the performance of cobalt redox mediators in DSCs is limited by rapid recombination from electrons in the TiO\textsubscript{2} conduction band to the cobalt(III) species and mass transport problems in the mesoporous TiO\textsubscript{2} electrode [66, 67].

To retard the fast recombination between TiO\textsubscript{2} conduction band electrons and the oxidized species of the cobalt(III/II) electrolyte, blocking layer has been incorporated on the TiO\textsubscript{2} surface[66, 68]. Cobalt complexes are bulky and therefore need sufficiently large pores to avoid mass transport limitations in TiO\textsubscript{2} based DSSC [7]. A mixed TiO\textsubscript{2} macroporous–mesoporous morphology has been introduced to assist the diffusion of cobalt electrolyte [69]. Yella and coworkers (2013) manage to solve the mass transport issues in cobalt based DSSC by increasing TiO\textsubscript{2} pore size (from 23 nm to 32 nm) and reducing thickness of TiO\textsubscript{2} film [7].

Table 5. Performance of different nanostructured TiO\textsubscript{2} electrodes in DSSCs

<table>
<thead>
<tr>
<th>Hierarchical Structure</th>
<th>Assemble by</th>
<th>Efficiency (Hierarchical)</th>
<th>Efficiency (NP)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO\textsubscript{2} sphere</td>
<td>nanorods and nanoparticles</td>
<td>10.34</td>
<td>8.10</td>
<td>[63]</td>
</tr>
<tr>
<td>Yolk–shell TiO\textsubscript{2} beads</td>
<td>TiO\textsubscript{2} nanoparticles</td>
<td>9.05</td>
<td>7.56</td>
<td>[64]</td>
</tr>
<tr>
<td>nanoporous TiO\textsubscript{2} spheres</td>
<td>TiO\textsubscript{2} nanoparticles</td>
<td>8.44</td>
<td>7.30</td>
<td>[65]</td>
</tr>
</tbody>
</table>

6. Band Gap Engineering to Improve Performance of Photoanode Materials

As discussed from Section 4.2, oxygen vacancy defects was found in the conventional TiO\textsubscript{2} photoanode material. These defects trap the electrons, causing the recombination reaction to occur. To improve the performance of TiO\textsubscript{2} photoanode, it is necessary to tailor the band gap of TiO\textsubscript{2} so that the properties of TiO\textsubscript{2} can be improved. Another possible solution is to discover new photoanode materials to substitute TiO\textsubscript{2} nanoparticles. The band gap of semiconductors such as nanosilica (> 4 eV) can be tuned to be used in DSSC applications.

6.1 Doping to Tailor the Band Gap of Photoanode Materials

Recently, doping TiO\textsubscript{2} with metal or nonmetal ions has been considered as a promising way to improve the properties of TiO\textsubscript{2} photoanode. Doping could change the surface properties such as the band edge or surface states of TiO\textsubscript{2} [70]. The positive shift of conduction band (moving downward in y axis) results in an increased injection driving force of electrons which improve the electron injection efficiency from the LUMO of the dye to the TiO\textsubscript{2} conduction band. Fast electron transport can improve charge-collection efficiency and thus increase photocurrent density [71].

Metal doping such as Nb, Sn, Zn and W doped TiO\textsubscript{2} has been found to exhibit a positive shift in a conduction band edge which increase the electron injection efficiency and suppressed the carrier recombination [72, 73]. Doping of nonmetals such as nitrogen, carbon, sulfur, and fluorine also shifts the conduction band edge of TiO\textsubscript{2} and decreases the concentration of oxygen vacancy by replacing the oxygen atoms which reduce the trapping of electrons at the defect sites [74]. Figure 2 shows the positive shift of E\textsubscript{g} with W doping. Performance of doped and undoped TiO\textsubscript{2} in DSSC was shown in Table 6.

![Fig. 2. Positive shift in E\textsubscript{g} of TiO\textsubscript{2} with W doping increases the driving force for electron injection (increases in J\textsubscript{sc}) and suppress recombination [Source:75].](image)
bulk silica (11 eV) with the nanosilica of 78 to 85 nm from 6.03 to 5.89 eV [81, 82]. Padavettan and coworkers (2009) noted that the decrease in particle size from 400 nm to 7 nm, the band gap decreased from 6.03 to 5.89 eV [83]. Besides that, Yelil Arasi and coworkers (2013) also reported reduction in band gap (3 - 4 eV) with the nanosilica of 78 to 85 nm [84]. This shows a large reduction of band gap from the reported band gap of bulk silica (11 eV) [85]. Lin and coworkers (2006) also reported the similar result where the band gap of TiO2 decreased from 3.239 to 3.173 eV when the particle size decreased from 29 to 17 nm [86].

From the above reported result, we can conclude that the band gap decreased (red shift) to a certain minimum value (critical size) with the decrease in particle size from its bulk particle. Further decrease in particle size from the critical size caused the band gap to increase (blue shift). Thus, band gap of semiconductor such as silica can be narrowed with the decrease in particle size from bulk to its critical size.

7. Conclusions and Summary

DSSCs have been extensively studied due to their promising potential for high efficiency, low production cost and eco-friendly production. However, recombination and light harvesting issues occur in conventional TiO2 nanoparticles limits its improvement in efficiency. Surface treatment such as TiCl4 treatment and core shell structure is advantageous in retarding recombination. Hierarchical structures which consists of assemblies of nanoparticles or 1D nanoparticles is the most promising photoanode due to its excellent properties without compromising surface area of the particles. Mass transport limitation in cobalt based DSSC can be overcome by optimizing the pore size and thickness of TiO2 photoanode. Meanwhile, band gap tailoring of TiO2 and studies on alternative photoanode materials for future development of DSSCs can be done through band gap engineering to overcome the limits in TiO2 nanoparticles. Thus, it is believed that with the above accomplishment, DSSCs will become one of the most promising solar devices in next generation.

Acknowledgments

This research is supported by the Malaysian Ministry of Education under the research grant number ERGS0022-TK-1/2012 and ERGS0019-TK-1/2012, and is greatly acknowledged.

References

INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH
Lau et al., Vol.4, No.3, 2014

