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ABSTRACT. Parameter estimation using method of moment (MOM), maximum
likelihood (ML), and method of semi fractional moments (SFM) for lognormal
distribution are compared and their corresponding asymptotic covariance matrices are
derived. It is found that SFM gives a better estimate than the other two methods.
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INTRODUCTION

Lognormal distribution has been widely used in many empirical studies in fitting
lifetime data models. For example, in the determination of the sizes of organisms, the
number of species in the field of biology, the amount of rainfall in meteorology and the
sizes of individual incomes in economics. A random variable is normally distributed. The
natural logarithm of a normally distributed random variable follows a lognormal
distribution.

In this paper we compare results obtained from the three methods; method of
moment (MOM), method of maximum likelihood (ML), and method of semi fractional
moments (SFM). We estimate the parameters, and derive their asymptotic covariance
matrices. From here this paper aims to find the best estimator.

In the conventional MOM lower orders moment are used to estimate the
parameters of distributions. It is known that sampling variability of the moment increases
as their order is increased. Therefore the order of moments may be reduced to less than 1
with a variable in the interval (0,1) (Masood Rafiq et al 1996), then the r™ fractional

moment of random variable X with density function f(x;0) is defined by:
: o
e =E(x")= [x"f(x,0)dx (1)
—m

And the corresponding i fractional moment from the sample x, x,,..., X, 15 defined as:
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The method of FM will consist of obtaining as many values of the fractional moment as

the number of the parameters to be estimated, and equating m:, with u; for different
values of r that is:

m, =, for r e (0,) (3)

It was found that the method of fractional moment as suggested by (Masood Rafiq
et al 1996) gave a good estimate if we take it as a semi fraction moments, by taking one
sample moment as in MOM, and the other as fraction moment as suggested in FM. That
is better known as Semi fractional moments.

Method of Moment (MOM)

The method of moment determines the estimators of the unknown parameters by
equatihg the sample moments to the corresponding population moments, that is,

m:,= p,:, for r=123,...k

where k is equal to the number of parameters involved: m, and p, as defined in (1) and
(2) respectively with integer values of r.

Maximum Likelihood Estimate (MLE)

Given a likelihood function L(6 ) for parameter® € ®, a maximum likelihood
estimate of © is obtained when L(0 ) is maximum (Adelchi Azzalini 1996).

Semi Fractional Moment Estimate (SFM)

This method determines the estimate of the unknown parameters by equating first
the ordinary sample moment by the ordinary population moment and the next fractional
sample moment by the fractional population moment. The fractional value is obtained by
choosing a suitable distinct values of r that minimizes the determinant of the covariance
matrix. It has been observed also that the values of r are invariant for a given value of
parameters (see empirical studies). (Noting that when r has an integer value this method
becomes the MOM).

In general, the asymptotic covariance matrix of the moment estimators for parameters 6
and 6, can be evaluated as follows (Tan and Chang 1972),

38




Parameter Fstimation Using Semi Fractional Moments In Lognormal Distribution

LI « i) o0
V[H] J: ami om, var(m)  cov(my,n,) ﬁm; 3?:11
By B | |covimy,m)  var(my)

oy Om |

This can be used to evaluate the asymptotic covariance matrix of the fractional moment
~ estimators. (Noting that the asymptotic covariance matrix of the MLE is attained to
- Cramer-Rao lower bound (Adelchi Azzalini 1996))

ESTIMATION OF THE PARAMETERS

Consider a Lognormal distribution with parameters p and o *. Then the
robability density function of random variable X is defined as:

~(Inx)-p)?
e 27 x>0

g(x) =4+ 2nox
0 otherwise

en the estimator of parameters p and c’are [I and &7 respectively and their
covariance matrix is given below for the three different methods.

Using the method of moment, the following results of derivations are obtained:

i = 2In(m) — InGo)

A ! ]- ¥
G2 = 2En{m2}-Eln{mi)

and the corresponding covariance matrix is:

S T iy 2 2 2
4° 4 —e* " —2e%° _2 gt gt Ll 3
V1(42}=_
G n
2 2 2 2 2 2
3¢2° " —4¢° —%e““ +3 L P . P L
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(b)  Using the method of maximum likelihood, the estimator of the parameters can be
obtained from the likelihood function

1 -(n(x)-p)?

n
L(p,c %)= 2
Uz e »

This 1s equivalent to

In( (1,0 1) == In2m) - 2ino 2 = 3 Inc,) ‘Elf 3" (In(x,) - p)’° 4
i=1

i=l

Then differentiating (4) with respect to p and ¢ 2, and equating the resulting expression
to zero we obtain

N

In(x;)
=1

-
B =—
M

and

3 (in(x,) - f1)?

G«Z — i=l

i

Therefore the corresponding covariance matrix is given by

3, [
S 0
e Fi}
L
V:{fJ:
O 2&4
f} 13
L H

(c)  Using the method of Semi fractional moment and extension of MOM the
following entities are obtained:
2 In(m, ) d

fi = —2—In(my) -
Awm-n) "V m(n-n)

ln(m;2 )

and

2

Q.

2 i 2 .
= fing a2 ©
r(r=n) ") ﬁ(rz—ﬁ}ln(m”)

The corresponding elements of covariance matrix are as follows:
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1, ot
h"l =;|:€ ! —1)
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Remarks: It turns out that |i is an unbiased estimate of W for the three cases, and G° is
an unbiased estimate of ¢ for MOM and SFM, while it is the biased estimator for ML.

That is to say that E(G*) = (n—-l)o ®in the case of ML, but the bias goes to 0 at the rate
n

1 : .
—as n—>wo. For comparison sake, it is best if all the estimators are unbiased
n

estimators. The bias can be removed by taking the corrected sample variance as shown
below:

- 2
2 (In(x; )} - x)
2 h ﬂ_nz:f=1,
n-1 n-1

Detailed discussion of the work in this section and the derivations can be found in Tan
and Chang (1972) and Crow and Shimizu (1988). Using all the derived entities above, we
apply each method of estimation to the following empirical studies.
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EMPIRICAL STUDIES

By using Fortran Power Station linked to IMSL library, the comparison of SFM,
ML and MOM estimators in terms of their asymptotic variances is evaluated for different
given values of the parameters. These results are tabulated in Table 2, noting that the
results of asymptotic variance are independent of the location parameter values. In
addition, Table 3 gives the relative efficiencies of ML and MOM estimators with respect
to the SFM estimators for the estimated parameters. For SFM we need to fix the value of

1, to be the first ordinary moment and to determine r, as fractional value which

minimizes the determinant. It turns out that these values are invariant. This is clearly
shown in Table 1.

Table 1. For given 7 =1, the fractional value of 7, which minimized the covariance
matrix determinant for known value of the scale parameter.

G2 n )
0.01 1.00 0.001
0.02 1.00 0.001
0.03 1.00 0.001
0.03 1.00 0.001
0.04 1.00 0.001
0.05 1.00 0.001
0.06 1.00 0.001
0.07 1.00 0.001
0.08 1.00 0.001
0.09 1.00 0.001

B 0.1 1.00 0.001

0.2 1.00 0.001
0.3 1.00 0.001
0.4 1.00 0.001
0.5 1.00 0.001
0.6 1.00 0.001
0.7 1.00 0.001
0.8 1.00 0.001

0.9 1.00 0.001
1.00 1.00 0.001
2.00 1.00 0.001
3.00 1.00 0.001
4.00 1.00 0.001
5.00 1.00 0.001
10.0 1.00 0.001
15.0 | 1.00 0.001
20.0 1.00 0.001

This entity is used in claiming a better estimator in the following discussion. (For the
purpose of this paper we only include for small sample size, n=20). As can be seen from
the earlier section, the determinant is independent of the location parameter. The table
indicates that the fractional values are invariant.
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Table 2: Asymptotic variance of the parameters.

VAR({) VAR(S?)

Py MOM ML SFM MOM ML SFM
0.01 | 5.000E-4 | 5.000E-4 | 5.000E-4 | 1.030E-5 | 1.108E-5 9.998E-6
0.02 | 1.000E-3 | 1.000E-3 | 1.O00E-3 | 4.246E-5 | 4.432E-5 4.000E-5
0.03 | 1.500E-3 | 1.500E-3 | 1.500E-3 | 9.844E-5 | 9.972E-5 9.000E-5
0.04 |2.002E3 | 2.000E-3 | 2.000E-3 | 1.802E-4 | 1.773E-4 1.590E-4
0.05 | 2.504E-3 | 2.500E-3 | 2.500E-3 | 2.001E-4 | 2.770E-4 2.500E-4
0.06 | 3.008E-3 | 3.000E-3 | 3.000E-3 | 4.303E-4 | 3.080E-4 3.600E-4
0.07 |3.512E-3 | 3.500E-3 | 3.500E-3 | 6.033E-4 | 5.429E-4 4.900E-4
0.08 | 4.020E-3 | 4.000E-3 | 4.000E-3 |8.116E-4 | 7.001E-4 6.400E-4
0.0 | 4.520E-3 | 4.500E-3 | 4.500E-3 | 1.OS7E-3 | 8.975E-4 8.100F-4
0.10 | S.041E-3 | S.000E-3 |S5.000E-3 | 1.344E-3 | 1.108E-3 1.000E-3
020 | 1.041E2 | 1.000E-2 | 1.000E-2 | 7.192E-3 | 4.432E-3 4.000E-3
030 | 1.6/6E-2 | 1.500E-2 | 1.500E-2 | 2.155E2 | 1.000E-2 9.000E-3
0.40 | 2.522E-2 | 2.000E-2 | 2.000E-2 | 5.090E-2 | 1.800E-2 1.600E-2
0.50 | 3.777E-2 | 2.500E-2 | 2.500E-2 | 1.055E-1 | 2.800E-2 2.500E-2
0.60 | 5.770E-2 | 3.000E-3 | 3.000E-2 | 2.015E-1 | 4.000E-2 3.600E-2
0.70 | 9.028E-2 | 3.500E-2 | 3.500E-2 | 3.639E-1 | 5.400E-2 4.901E-2
0.80 | 1.439E-1 |4.000E-2 |4.000E2 |6311E-1 | 7.100E-2 6.401E-2
0.90 | 2.319E-1 | 4.500E-2 | 4.500E-2 |1.01619 | 9.000E-2 8.102E-2
.00 | 3.747E-1 | 5.000E-2 | 5.000E-2 | 1.74570 I.110E-1 1.000E-1
2.00 | 33.1674 | 0.10000 | 0.10000 130.556 | 4.430E-1 4.002E-1
3.00 |1997.99 | 0.15000 | 0.15000 | 8061.02 | 9.970E-1 9.008E-1
400 |110789.1 | 0.20000 |0.20000 | 4437202 | 1.77285 1.60192
500 | 6062392 | 0.25000 | 0.25000 | 2.425E+7 | 2.77000 2.50375
10.0 | 2.94E+15 |0.50000 |0.50000 | 1.17E+16 | 11.0803 10.0300
15.0 | 1.42E+24 | 0.75000 | 0.75000 | 5.71E+24 | 24.9307 22.6014
200 | 6.92E+32 | 1.00000 | 1.00000 | 2.77E+33 | 44.3213 40.2406

The variances of the two estimators derived from each method increase as the
value of the estimator increase. As can be seen from the Table 2 as the parameter
increases the variance of the estimated parameters by MOM increased significantly.

Table 3 indicates that the maximum likelihood estimate for p is equally good

compared to SFM. While in estimating ¢ *, the SFM method gives a superior estimate.
The relative efficiency of MOM decrease as the value of the estimate increases which
give significant credit to SFM. In order to enhance the above finding, we examine the
above claim mentioned through a numerical example in the following section.
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Table 3: Relative efficiency of different estimating methods with respect to SFM

MOM MLE

52 eff(i) | EMG?) eff(11) eff(3?)

0.01 1.00 0.96 1.00 0.90
0.02 1 1,00 0.94 1.00 0.90
0.03 0.99 0.91 1.00 0.90
0.04 0.99 0.88 1.00 0.90
0.05 0.99 0.86 1.00 0.90
0.06 0.99 0.83 1.00 0.90
0.07 0.99 0.81 1.00 0.90
0.08 0.99 0.78 1.00 0.90
0.09 0.99 0.76 1.00 0.90
0.10 0.99 0.74 1.00 0.90
0.20 0.95 0.55 1.00 0.90
0.30 0.90 0.41 1.00 0.90
0.40 0.80 0.31 1.00 0.90
0.50 0.66 0.23 1.00 0.90
0.60 0.52 0.17 1.00 0.90
0.70 0.39 0.13 1.00 0.90
0.80 0.28 0.10 1.00 0.90
0.90 0.19 0.079 1.00 0.90
1.00 0.13 0.057 1.00 0.90
2.00 - 0.003 0.003 1.00 0.90
3.00 7.5E-5 1.1E-4 1.00 0.90
4.00 1.8E-6 3.6E-6 1.00 (.90
5.00 ~ () ~0 1.00 0.90
10.0 ~ 0 ~0 1.00 0.90
15.0 ~0 ~ 0 1.00 0.90
20.0 ~0 ~0 1.00 0.90

NUMERICAL EXAMPLE

We applied the three methods in determining the parameters concerned by

fitting the data to lognormal distribution. We used %= 1.0 and r,= 0.001 to the data
published in Crow and Shimizu (1988).

The data reported the maximum flood flow in millions of cubic feet per second
for the Susquehanna River at Harrisburg, Pennsylvania, over a 20 four-year intervals
from 1890 to 1969 as given by Masood Rafig, Munir Ahmed and Faqir Muhammed
(1996) shown below:




- 0.654 0.269 0.402 0.416 0.613

10379 0.740 10.338 0315 0.423
0.418 0.392 0.449 0379 0.412
0.484 0.297 0.324 0.494 0.265

data fit nicely to lognormal distribution as shown by the following figure with
0.423125 and variance 0.0156948.

Maximum flood flow

1 i@l U TnorSdis1al 18504568 170 19

15 in this work we take # =1.00 and »,=0.001 to estimate the two parameters when
ng SFM method. The results from all the three methods are shown in the following
e.

MOM ML SFM

| 20.90000 Z0.897700 20.897700
| MSE({) 0.01570 0.000785 0.000785
Y 0.07995 0.076255 0.075201
MSEG?) 5.1671E-4 373155 2.4779E-5

- As can be seen from the above table, the SFM method is more efficient than the other two
- methods. Noting that the MSE of the MLE variance is computed by using the corrected
- sample variance as stated in estimation of the parameters.

CONCLUSION AND RECOMMENDATION

As can be seen from the experiments carried out, SFM gives a better estimate than
the other two methods for the location, p and scale parameter, ¢ *. The ML gives about
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90% efficiency compared to SFM for the scale parameter and is equally efficient for the
location parameter. In the case of MOM, the estimates obtained are less efficient
compared to SFM (i.e. in the region of 20%) for both the parameters.

Though the procedure is tedious, it is worth making the effort to use SFM method
in estimating parameters for non-negative data. Thus thorough work may be carried out
further for other distributions especially distributions involving 3 or more parameters.
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