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A new hybrid method for automated frog sound identification, using spectral centroid, Shannon entropy
and Rényi entropy is proposed. The advantage of using entropy based information theoretic approach for
analyzing complexity of bioacoustics signals in animal vocalization is discussed. Sound samples from
nine species of Microhylidae frogs are first segmented into syllables. Fourier spectral centroid, Shannon

entropy and Rényi entropy of the syllables are then determined. Finally, nonparametric k-th nearest
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neighbour (k-NN) classifier is used to recognize the frog species based on these three extracted features.
Result shows that the k-NN classifier based on these selected features is capable to identify the species of
the frogs with an average accuracy of 98%. It is found that the accuracy reduces significantly only when
the noise levels higher than —20 dB.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recognition of animals from their calls has been studied for a
very long time [1]. Animal sound productions normally can be di-
vided into two categories namely the non-incidental sounds, which
are used for communication purpose, and the incidental sounds
that result as the by-product of their activities. Quite naturally,
the animal species could be identified according to their sound
productions. Nevertheless, manual classification of bioacoustics
signals can be very ambiguous and most often rely heavily on
the surveyor’s expert knowledge of the group under investigation.
Automated identification or recognition of animal species based on
their sounds offers many advantages especially for rapid biodiver-
sity assessment and eco-system monitoring using sensor networks,
which also may bring the joy of discovering of new species of ani-
mals by amateurs equipped with a smart species recognition sys-
tem. When many sensors are available, localization of particular
species could also possible for other purposes, for example for ex-
act species mapping or location identification. Biodiversity assess-
ment has become a central and urgent task in conservation biology,
not only to determine species richness but also to evaluate differ-
ences between communities occupying different areas or to deter-
mine the temporal change in the population [2].
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Species identification using computational methods involves
pattern recognition in which an unknown specimen is placed into
one of a number of possible classes depending on the features ex-
tracted from the measurements on the species [1]. Many tech-
niques have been introduced for bioacoustics signal detection
and analysis. Most of these approaches rely on time domain and/
or frequency domain analyses. Time domain approach for signal
processing may include features such as frame energy, silence ra-
tio, volume root mean square (RMS), volume dynamic ratio
(VDR), total energy and zero-crossing ratio [3]. Fourier transform
based power spectrum, wavelet transform and linear prediction
coding (LPC) coefficients are examples methods used to extract rel-
evant frequency (or time-frequency) contents for frequency (or
time-frequency) domain techniques [4]. Tyagi et al. [5] studied
bird sound based on the average spectrum over time and classified
species using template matching method. Vilches et al. [6] has
introduced the pulse-by-pulse basis as feature extraction and used
data mining techniques for classification. In the related develop-
ment, Chesmore [1,3] has introduced application of time domain
signal coding (TDSC) approach to extracting birds and orthoptera
sound signals and successfully classified them by using artificial
neural network (ANN). Degradation in the performance of this
technique under high noise to signal ratio has also been pointed
in the study.

Huang [7] has pointed out that most of the research works on
recognition of animal calls have focused on animal species identi-
fication, such as for bird species identification [5,6]. Other than
this, Chesmore [3] has carried out several studies on similar
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classification such as for insects, bats, deer and killer whales. Stud-
ies on identification of other animal calls are relatively few [8].

Technique devoted to the development of automated frog
sound recognition system is not widely known in the literature.
Thus, it becomes essential to develop an efficient frog sound recog-
nition system [7]. Frog sound can be seen as an organized sequence
of brief sounds from a species-specific vocabulary. Those brief
sounds are usually called syllables [9]. ‘Fingerprint’ of the bio-
acoustics signal can be constructed by extracting useful parame-
ters of these syllables to form a feature vector. Selection of
suitable features to be used in the recognition process plays a crit-
ical role for any automated recognition system. In this paper, we
consider spectral-entropy method consists of Fourier spectral cen-
troid, Shannon entropy and Rényi entropy as the bioacoustics fea-
tures determined from a collection of sound syllables of nine frog
species. It is shown that using this hybrid method, accuracy in frog
species identification is superior compared to when they are used
individually.

Nine frog species from Australian Microhylidae family were se-
lected for this investigation. The Microhylidae is a family of firmis-
ternal frogs, which have broad sacral diapophyses, one or more
transverse folds on the surface of the roof of the mouth, and a un-
ique slip to the abdominal musculature. Almost all Australian
Microhylids are small (snout to vent length less than 35 mm),
and all have procoelous vertebrae, are toothless and smooth-bod-
ied, with transverse grooves on the tips of their variously expanded
digits. The terminal phalanges of fingers and toes of all Australian
microhylids are T-shaped or Y-shaped with transverse grooves
[10].

Normally, Microhylidae frogs make their call when they are
ready to mate which is during the rainy season. Some calls are
made with single or groups of ringing notes, while some have
harsher voices. Many males have a bag of skin, called a vocal sac,
on the throats. The vocal sac fills with air and deflates when they
call (http://animals.jrank.org/).
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2. General method of frog sound identification

The frog sound identification system proposed in this work
basically consists of three processes, namely the syllable segmen-
tation, feature extraction and classification.

2.1. Syllable segmentation

A syllable is basically a sound that a frog produces with a single
blow of air from the lungs [7]. The rate of events in frog vocaliza-
tion may be so high that the separation of individual syllables is
difficult in a natural environment due to reverberation. Once the
syllables have been properly segmented, a set of features can be
calculated to represent each syllable [7]. Fig. 1 shows four exam-
ples of the syllables waveforms for frog species of Cophixalus bomb-
iens. From this example, basically, we can see the waveforms from
each syllables are actually looked similar.

Depending on the species, the number of syllable in a call varies
from as low as 12 syllables and as high as 96 syllables. The dura-
tion for each syllable is between 3.58 x 10> s to 0.065 s, whereas
the duration for each call is in the range of 0.536 s to over 3 s. The
dominant frequency of the call for each species also varies from
1.7 kHz to 4.9 kHz with different active frequency range. Interested
readers could refer to the table in Appendix A for some time do-
main and frequency-domain characteristics of the call for each
species.

In this study, a signal segmentation software tool named ‘Raven
Lite’ has been used for all of the frog species sound samples. The
segmented syllables for each species are digitized in 24-bit WAV
format with sampling frequency of 44.1 kHz. Matlab software is
used for further analysis, which is the feature extraction and
classification.

Fig. 2 shows an example of spectrograms of a complete call for
four different species which were also obtained by using Raven Lite
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Fig. 1. Four examples of segmented syllables of Cophixalus bombiens. (a) Syllable 1, (b) Syllable 2, (c) Syllable 3 and (d) Syllable 4.
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Fig. 2. Spectrogram examples of complete call for four species in this study. (a)
Cophixalus hosmeri, (b) Cophixalus infacetus, (c) Cophixalus neglectus and (d)
Cophixalus saxatilis.

software. Figs. 3 and 4 show the examples of segmented syllable
from these species in waveforms and their corresponding spectro-
gram (using mesh method in MATLAB).
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2.2. Feature extraction

Three features are extracted from the sound syllables, namely
the spectral centroid, Shannon entropy and Rényi entropy. Spectral
centroid is a commonly used feature in the pattern recognition
studies [7]. The main contribution of the present study would be
the inclusion of information theoretic concepts such as the Shan-
non entropy and the Rényi entropy to form a spectral-entropy hy-
brid system that is shown to improve species identification.

2.2.1. Spectral centroid

Spectral centroid is the center point of spectral distribution. In
terms of human audio perception, it is often associated with the
brightness of the sound. Brighter sound is related to the higher
centroid [7]. The spectral centroid f. of a power spectrum distribu-
tion is defined as the weighted mean of the frequencies present in
the signal, given by
fc _ ZII:J;(} kPk

N-1 )
k=0 Py

(1)

where Py is the magnitude of the spectrum of bin number k and f;
represents the center frequency of the respective bin.

2.2.2. Shannon entropy

Shannon entropy H is the expected information content of a se-
quence or signal X = {xq, X2, X3, ..., X,}. Shannon entropy describes
the average of all the information contents I weighted by their
probabilities p;, namely

H(X) =Ell(p)] =Y _pil(p) =~ _pilogy(p), @)
i=1 i=1

where E[] denotes expectation value. The continuous version of the
Shannon entropy is called the differential entropy written as
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Fig. 3. Four examples of segmented syllable waveforms for four species in this study.

Cophixalus saxatilis.
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Fig. 4. Corresponding spectrogram for each segmented waveform given in Fig. 3. (a) Cophixalus hosmeri, (b) Cophixalus infacetus, (c) Cophixalus neglectus and (d) Cophixalus

saxatilis.
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In other words, Shannon entropy of a signal indicates the degree
of predictability of the signal. Consider a d.c. signal at constant
amplitude k. Its probability density function is then a unitary im-
pulse located at k, i.e. p; = 6(k), therefore its entropy or unpredict-
ability is zero. In ecology diversity, Shannon entropy is the
second most used index after species richness (number of species)
[11]. It increases with the evenness of the categories numbers and
frequencies. In ecology, categories are often species that differ by
their relative richness in a habitat [12]. In biodiversity study, Sueur
et al. [12] proposed the use of Shannon entropy on a time series se-
quence, where the categories are represented by time units and
their frequencies are referred to the probability mass function of
the amplitude envelope. Therefore, by using this measure, the time
units with low probability mass function of the amplitude enve-
lope characterize the acoustic diversity. Nevertheless, production
of animal sounds in field will also influence the amplitude enve-
lope at each time unit. In this study, we use the Shannon entropy
as a measurement of richness of the information contents in frog
sounds.

2.2.3. Rényi entropy
Rényi entropy of order « > 0 is defined as [13]

1 N
1= aIng <Zpi>

where p; is the probabilities of the occurrence {x1, X2, X3, ..., X;} in
the signal. Rényi entropy have been used in communication and
coding theory [14], data mining, detection, segmentation, classifica-
tion [15], characterization of signals and sequences [16], signal pro-
cessing [17], image matching and registration [15]. Rényi
information can be used to “obtain different averaging of probabil-
ities” via the parameter « (see [18]). By considering Ha as a function

H.(X) = (4)

of «, the spectrum of the Rényi entropy is also of some interest in
signal analysis. For example, Rényi information of order of =2 is
used as a measure of diversity in economics [19]. In the study of
random signal, a lower bound of Rényi entropy at least in order of
o =2 is often adopted. In the limit o — 1, the Rényi entropy ap-
proaches the Shannon entropy. In information theoretic works,
measurement of Rényi entropy also refers to the estimation of noise
when transferring a signal. In this paper, Rényi entropy is used to
represent the noise content of the sound sample which also implies
their complexity. One may expect that in this context, the ‘highly
ordered’ frog call will produce sound of relatively low complexity.
For this study, we choose « = 3 for the estimation of Rényi entropy.
This is the default value in Matlab software and is widely used in
other studies

2.3. (Classification of k-nearest neighbours

One of the most elegant and simplest classification techniques
is the k-nearest neighbour (k-NN) rule [20], which is used to clas-
sify d-dimensional feature vector x € R%. At first, the classifier
searches for the k-NN among a set of m prototypes for an input
vector x. The k-NN metric is then calculated utilizing the [P-norm,
p € [1, o], where the special cases are the Manhattan distance
(p=1), the Euclidean distance (p =2) and the maximum distance
(p = 00). The distance metric is defined as

d ) 1/p
&7 (x,%) = [x =¥, = (Z x xé)
i
For the distances dj.’,there is a sequence (7)), =€ (1,2,...,m),
with the property of d? < ... < d} . The k-NN of x is then defined
by Ni(x) := {x™1,...x%} withk < m.Let ¢; = ¢(x;,),i = 1,..., kbe the
classes of the k-NN and N, (x) = {y € Ni(x)|c(y) = j} be the subset of
nearest neighbour of class j. The classification for input x is defined
through majority voting, i.e. j*: =argmax (j = 1,...,l|Nj(x)|), where
j* is the class which most often occurs among the k-NN. Here [ is

(5)
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Table 1
Comparison of the accuracy of the classifier with and without entropy (Shannon
entropy and Rényi entropy).

No. Scientific Number k-NN (with entropy) k-NN (without

name of syllable entropy)
Accuracy Correct Correct Accuracy
(%) syllable  syllable (%)

1 Cophixalus 6 6 100.00 3 50.00
bombiens

2 Cophixalus 6 6 100.00 3 50.00
concinnus

3 Cophixalus 6 6 100.00 3 50.00
exiguus

4 Cophixalus 6 5 83.33 2 33.33
hosmeri

5 Cophixalus 6 6 100.00 3 50.00
infacetus

6 Cophixalus 6 6 100.00 6 100.00
monticola

7 Cophixalus 6 6 100.00 3 50.00
neglectus

8 Cophixalus 6 6 100.00 6 100.00
ornatus

9 Cophixalus 6 6 100.00 6 100.00
saxatilis

the number of classes [21]. k-NN has been applied in various sound
analysis problems [7]. Given as a set of parameters, it finds the
nearest neighbour among training data and uses the categories of
the neighbour to determine the class of a given input. The spectral
centroid, Shannon entropy and Rényi entropy are the input param-
eters for the k-NN classifier used in this study.

3. Experimental results

In this work, a database that consists of nine frog species found
in Australia, as listed in Table 1 (obtained from http://www.Frogs-
australia.net.au/frogs), are used. Sound files in the form of single
syllable for nine frog species are segmented from the original
recordings. For each species, a total of six segments were prepared.

The following classification accuracy is used to examine the
performance of the proposed work:

Nc

A:NS

x 100, (6)

where N, is the number of syllables which were recognized cor-
rectly and Ns is the total number of test syllables.
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Fig. 5. Comparison of the performance of spectral and hybrid spectral-entropy
based classification of nine Microhylidae frog species.

The experimental results are shown in Fig. 5 where a total of 54
syllables (six syllables for each species) are used for testing. The k-
NN classifier is used in two models, which are with spectral cen-
troid alone and with spectral centroid, Shannon entropy and Rényi
entropy (hybrid method). Their accuracies are then compared to
assess the effectiveness of entropy as an additional feature for frog
sound classification. Euclidean distance is chosen for the k-NN clas-
sifier with the number of neighbour, k= 11.

The results of classification with spectral centroid, Shannon en-
tropy and Rényi entropy for nine Microhylidae frog species are
shown in Figs. 6-8, respectively. Finally, the sensitivity of the k-
NN classifier with Shannon and Rényi entropies is tested for differ-
ent noise levels. We used the Gaussian white noise at signal to
noise ratio of —40dB, —30dB, —20dB and —10 dB, respectively
and the results are shown in Fig. 9.

4. Discussions and conclusions

In this study, we have incorporated two concepts of entropy,
namely Shannon and Rényi entropy, as features for species classi-
fication in the k-NN classifier. Our results showed that the classifier
based on spectral centroid without the entropy failed to classify
the following species: C. bombiens, Cophixalus concinnus, Cophixalus
exiguus, Cophixalus hosmeri, Cophixalus infacetus and Cophixalus
neglectus. For these species, the accuracy of classification is less
than 50%. This could be explained by referring to Fig. 6, where
the spectral centroid of the C. bombiens and C. hosmeri falls into
the same level of frequency. Similar explanation applies for
C. exiguus and C. infacetus. Besides, Cophixalus concinuus, Cophixalus
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Fig. 6. Classification of nine Microhylidae frog species based on spectral centroid.
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Fig. 7. Classification of nine Microhylidae frog species based on spectral centroid combined with Shannon entropy.
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monticola, C. neglectus and Cophixalus ornatus exhibit spectral cen-
troid frequencies very close to each other. This explained why the
k-NN classifier is unable to identify or misclassify the frog species
which share similar frequencies. However, there are some species
such as the C. monticola, C. ornatus and Cophixalus saxatilis which
classifier able to differentiate despite having spectral centroid
frequencies close to each other (see Fig. 6). As for C. saxatillis, the
spectral centroid frequency is very distinctive from other species,
thus making it the easiest species to classify.

By introducing the entropy into the classifier, we have seen
marked improvement in the accuracy of classification. The entropy
based classifier managed to identify nine of the Microhylidae frogs
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with average accuracy more than 98%. As a comparison, the hybrid
classifier with entropy approach has successfully identified several
species which failed in the previous case, such as C. bombiens, C.
concinnus, C. exiguus, C. hosmeri, C. infacetus and C. neglectus (see Ta-
ble 1).

In order to determine the classifier's response to varying noise
levels, Gaussian white noise was added to all sound samples. It is
evident from Fig. 9 that the identification accuracy improves under
low noise conditions, except for C. hosmeri. The overall perfor-
mance of entropy based k-NN classifier is found to be better than
the purely spectral based approach. The former did well in classi-
fying C. bombiens, C. exiguus, C. monticola, C. ornatus and Cophixalus
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Fig. 9. Sensitivity of the spectral-entropy based classifier for different levels of noise contamination.
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saxatillis species. This study has shown that performance of the
classifier can be enhanced by using entropy approaches. By com-
bining different definitions of entropy, we have shown the advan-
tage of spectral-entropy based k-NN classifier that incorporates
both of the spectral harmonics as well as signal predictability
and complexity measures for species classification.
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