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Abstract: The fixed-points theory has been used as one of the design laws in
fabricating a vibration neutralizer for the control of a relatively simple structure.
The underlying principle of the theory is that in the frequency response function
(FRF) of the system considered, there exist two fixed points that are common
to all FRF curves regardless of the damping value of the neutralizer. It is
possible, with the proper selection of the neutralizer’s resonance frequency, to
determine the optimal damping value of the neutralizer that provides a smooth
FRF by following the standard procedure of the theory. Recently, the authors
have extended the application of the theory for global vibration control of
a continuous structure with well separated natural frequencies. In this paper,
the application is further extended to global vibration control of a structure
with natural frequencies that are closely spaced. Through some numerical
simulations, it is shown that the theory can also be used to remove the effects
of the dominant mode within the frequency range where the global response is

Received June 14, 2005; Accepted October 24, 2005
#Communicated by S. Sinha.
Correspondence: Jedol Dayou, Vibration and Sound Research Group (VIBS),

School of Science and Technology, University of Malaysia Sabah, Locked Bag
2073, 88999 Kota Kinabalu, Sabah, Malaysia; Fax: +60-88-435324; E-mail: jed@
ums.edu.my

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

iti
 M

al
ay

si
a 

Sa
ba

h]
 a

t 1
8:

39
 1

0 
A

pr
il 

20
13

 



50 Dayou and Wang

dominated by that mode. However, there are some limitations in its application
especially for the overlapping natural frequencies.

Keywords: Fixed-points theory; Flexible structures; Global vibration control;
Passive vibration control; Vibration adsorbers; Vibration neutralizers.

INTRODUCTION

The fixed-points theory dates back to 1932 when Hahnkamm (1932)
suggested that there are two fixed points in the primary structure’s
frequency response function (FRF) of two degree of freedom system
when a harmonic force is applied to the primary mass. These points are
independent of the damping value in the auxiliary system, which is the
control system, and their heights are mainly determined by the mass ratio
of the device. The desired optimal value of the tuning ratio is obtained
when the height of the fixed points are equal. Fourteen years later, Brock
(1946) suggested the optimum value of the damping ratio in the control
device could be determined by making the height of the fixed points the
maximum. The theory has been well documented in the textbook by den
Hartog (1956). Since then, the fixed-points theory has been successfully
used in many applications as one of the design laws in fabricating a
vibration neutralizer (Ren, 2001).

Unfortunately, these applications are confined only to the control
of a relatively simple structure or to control the point response of a
continuous structure with well separated natural frequencies such as
beams (Stefen and Rade, 2002). However, for a continuous structure,
reducing the vibration amplitudes at a point may increase its amplitudes
at other points (Dayou, 1999). In order to achieve overall reduction,
global measures of the continuous structure must be chosen as a cost
function to be minimized. It has been shown that these two fixed points
also exist in the kinetic energy (as a measure of the global behavior) of
a beam (Dayou and Wang, 2004). As a consequence, it was then proven
that the theory can be used to remove the effects of the dominant mode
leaving only the effect from residual modes in the global response of the
beam (Dayou, 2005, 2006).

In this paper, the application of the fixed-points theory is further
developed and examined for the control of global vibration of
two dimensional structure such as plates. The structure has natural
frequencies that are close to each other and its kinetic energy is chosen as
a cost function to be minimized. Through some numerical simulations,
it is shown that the theory can also be used to remove the effect of the
dominant mode in the frequency range of interest, as in the case of the
beam.
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Derivation of the Fixed-Points Theory 51

PROBLEM FORMULATION

The transverse displacement of the plate w at any point on its two-
dimensional surface �x� y� can be written in terms of finite mode MN as

w�x� y� = �Tq (1)

where w�x� y� is the displacement at the location �x� y��� is the vector
of the mnth normalized mode shape of the plate evaluated at �x� y�,
and q is the vector of the modal displacement amplitude. The vector of
the modal displacement amplitudes is given by q = Ag where A is the
complex modal displacement amplitude whose elements are given by

Amn =
1

Ms��
2
mn − �2 + i2�mn�mn��

(2)

and g is the vector of the generalized force acting on the structure. In
Eq. (2), Ms is the modal mass, �mn is the modal damping ratio, � is the
circular frequency of the primary force, �mn is the mnth circular natural
frequency of the structure, and i is the imaginary number given by

√−1.
If a vibration neutralizer is used as a control device and is fitted

on the plate, then there are two contributing forces that make up the
generalized force, g—the primary uncontrolled force and the feedback
force generated by the neutralizer. Therefore, the modal displacement
amplitude is written as

q = A�gp +�kfk� (3)

where gp, �k, and fk are the vector of the generalized primary force,
the normalized mode shape of the plate evaluated at the neutralizer’s
location, and the amplitude of the feedback force from the neutralizer,
respectively. Note that �kfk is the generalized feedback force from the
vibration neutralizer.

The feedback force from the neutralizer can be written as (Jones,
1967)

fk = −Kkw�x� y� (4)

where Kk is the dynamic stiffness of the neutralizer given by

Kk = −�2Mk

[
1+ i2�k��/�k�

1− ��/�k�
2 + i2�k��/�k�

]
� (5)

Mk, �k, and �k are the mass, the damping ratio, and the resonance
frequency of the neutralizer, respectively. The damping ratio of the
neutralizer is defined as �k = Cck/�2Mk�k� where Cck is the neutralizer’s
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52 Dayou and Wang

critical damping, whereas the resonance frequency is �k =
√
kk/Mk, and

kk is the neutralizer’s stiffness constant. Substituting Eq. (1) into (4) gives
the neutralizer’s feedback force in terms of the modal amplitude of the
structure as

fk = −Kk�
Tq� (6)

Therefore, combining Eqs. (3) and (6) gives the modal displacement
amplitude as

q = A�gp − Kk�
T
k�kq� (7)

or

q = �I + KkA�
T
k�k�

−1Agp� (8)

Combination of Eqs. (1) and (8) represents the behavior of the plate at
a particular point with a neutralizer attached and this can be used to
evaluate the neutralizer’s performance for the purpose of point control.
However, it is well known that reducing the vibration amplitude at
a particular point may increase the amplitude at some other points
(Dayou, 1999). Therefore, a global term is required to evaluate the
total effectiveness of the control device. In this paper, the time averaged
kinetic energy is used as a measure of the global behavior of the system.
The time averaged kinetic energy (or simply kinetic energy) is given by
(Nelson and Elliott, 1992)

KE = Ms�
2

4
qHq (9)

where the superscript H denotes the Hermitian transpose.

OPTIMUM TUNING AND DAMPING RATIOS
OF THE NEUTRALIZER

As described earlier, the fixed-points theory was originally developed
for the control of a relatively simple structure. The theory was then
developed for point response control of a continuous structure with well
separated natural frequencies (Stefen and Rade, 2002). Later, the theory
was developed for the control of global behavior of structure of well
separated natural frequencies, in the vicinity of the natural frequency of
interest (Dayou, 2005, 2006). In this paper, the application of the theory
is further developed and examined to be used in the global vibration
control of a structure that has natural frequencies that are close to
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Derivation of the Fixed-Points Theory 53

each other. However, the question on the applicability of the theory
to such a problem will not be dealt with at this stage. The theory is
simply developed in this section and the question of the possibility of
application is addressed in a later section.

At this stage, let us simply assume that the modal displacement
amplitude in the vicinity of mnth natural frequency of the structure can
be approximated by its mnth mode only. In this situation, Eq. (8) can be
rewritten as

qmn =
Amngpmn

1+ KkAmn	
2
mn�xk� yk�

� (10)

Let us also assume that there is no damping in the structure. Therefore,
the complex modal amplitude of the plate can be rearranged as

Amn =
1

�kmn −Ms�
2�

(11)

whereas the dynamic stiffness of the neutralizer is rewritten as

Kk = −Mk�
2

[
kk + i2�k

√
Mkkk�

kk −Mk�
2 + i2�k

√
Mkkk�

]
� (12)

kmn in Eq. (11) can be regarded as the mnth effective bending stiffness of
the plate given by

kmn =
[(

m


Lx

)2

+
(
n


Ly

)2]2Eh3LxLy

1− v2
� (13)

E� h� Lx� Ly, and v are the Young’s modulus, the thickness, the length,
and the width of the plate, respectively. By using Eqs. (11) and (12),
Eq. (10) can be expressed as

qmn =
gpmn

[
�i2�k

√
Mkkk��+ �kk −Mk�

2�
]

[
�i2�k

√
Mkkk���kmn −Ms�

2 −Mk�
2	2

mn�xk� yk��

+��kmn −Ms�
2��kk −Mk�

2�−Mkkk�
2	2

mn�xk� yk��
] � (14)

Therefore, the kinetic energy of the plate in the vicinity of its mnth
natural frequency can be written as

KEmn = Ms�
2g2pmn

4

× ��2�k
√
Mkkk��

2 + �kk −Mk�
2�2�[

�2�k
√
Mkkk��

2�kmn −Ms�
2 −Mk�

2	2
mn�xk� yk��

2

+ ��kmn −Ms�
2��kk −Mk�

2�−Mkkk�
2	2

mn�xk� yk��
2
] �

(15)
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54 Dayou and Wang

If the equation is divided by �Mk/Mk�
2 then

KEmn = Ms�
2g2pmn

4

×
[
�2�k�k��

2 + ��2
k − �2�2

]
[
�2�k�k��

2�kmn −Ms�
2 −Mk�

2	2
mn�xk� yk��

2

+ ��kmn −Ms�
2���2

k − �2�−Mk�
2
k�

2	2
mn�xk� yk��

2
] �

(16)

Equation (16) can also be written as

KEmn =
�2g2pmn

4Ms

[
�2�k�k��

2 + ��2
k − �2�2

]
[
�2�k�k��

2��2
mn − �2 − �2	2

mn�xk� yk��
2

+ ���2
mn − �2���2

k − �2�− �2
k�

2	2
mn�xk� yk��

2
]

(17)

where  is the mass ratio given by Mk/Ms. Equation (17) can be divided
by (�mn/�mn�

4 to get

KEmn =
�2g2pmn

4Ms

[
�2�kfmngmn�

2 + �f 2
mn − g2mn�

2
]

[
�2�kfmngmn�

2��2
mn − �2 − �2	2

mn�xk� yk��
2

+ ��1− g2mn���
2
k − �2�− f 2

mn�
2	2

mn�xk� yk��
2
]

(18)

where

fmn = �k/�mn

gmn = �/�mn�
(19)

Dividing only the denominator by �4
mn/�

4
mn (where �mn =

√
kmn/Ms�

yields

KEmn =
Ms�

2g2pmn

4k2mn

[
�2�kfmngmn�

2 + �f 2
mn − g2mn�

2
]

[
�2�kfmngmn�

2�1− g2mn − g2mn	
2
mn�xk� yk��

2

+ ��1− g2mn��f
2
mn − g2mn�− f 2

mng
2
mn	

2
mn�xk� yk��

2
] �

(20)

Equation (20) is the kinetic energy of the mnth natural frequency of the
plate in its dimensionless form. This can be rearranged to give

KEmn =
Ms�

2g2pmn

4k2mn

(
A2�2k + B2

C2�2k +D2

)
(21)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

iti
 M

al
ay

si
a 

Sa
ba

h]
 a

t 1
8:

39
 1

0 
A

pr
il 

20
13

 



Derivation of the Fixed-Points Theory 55

where

A = 2fmngmn�

B = g2mn − f 2
mn�

C = 2fmngmn

{
g2mn − 1+ g2mn	

2
mn�xk� yk�

}
�

D = f 2
mng

2
mn	

2
mn�xk� yk�− �g2mn − 1��g2mn − f 2

mn��

(22)

Equation (21) has the same form as for the simple primary system
described by Brock (1946) and also by den den Hartog (1956), which
makes it possible to define two invariant points regardless of the
damping value in the vibration neutralizer when A/C = B/D.

Following the classical fixed-points theory, the two fixed points can
be established by considering two cases of kinetic energy of the structure:
when the neutralizer’s damping ratio is zero and when it is infinity. Using
Eq. (21), these two cases can be expressed respectively as

�mn��k=0 =
(
B2

D2

)
(23)

�mn��k=� =
(
A2

C2

)
� (24)

where

�mn = KEmn

/
Ms�

2g2pmn

4k2mn

� (25)

The condition �B/D�2 = �A/C�2 implies the two crossing points of curves
�mn��k=0 and �mn��k=�. By using this crossing point condition, based on
Eq. (22), it can be written that

{
g2mn − f 2

mn

f 2
mng

2
mn	

2
mn�xk� yk�− �g2mn − 1��g2mn − f 2

mn�

}2

=
{

1
g2mn − 1+ g2mn	

2
mn�xk� yk�

}2

� (26)

Equation (26) can be reduced to a simpler form by taking its square roots
but a ±ve sign must be added to the right hand side of the equation.
Equation with a −ve sign is the trivial solution, therefore the fixed-points
equation is given by

g2mn − f 2
mn

f 2
mng

2
mn	

2
mn�xk� yk�− �g2mn − 1��g2mn − f 2

mn�
= 1

g2mn − 1+ g2mn	
2
mn�xk� yk�

�

(27)
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56 Dayou and Wang

Cross-multiplication and rearrangement yields

g4mn − 2g2mn

{
1+ f 2

mn + f 2
mn	

2
mn�xk� yk�

2+ 	2
mn�xk� yk�

}
+ f 2

mn

{
2

2+ 	2
mn�xk� yk�

}
= 0�

(28)

Suppose g2mn1 and g2mn2 are the roots of this equation, then

�g2mn − g2mn1��g
2
mn − g2mn2� = g4mn − �g2mn1 + g2mn2�g

2
mn + g2mn1g

2
mn2 = 0�

(29)

Again, by comparing Eqs. (28) and (29), one obtains

g2mn1 + g2mn2 = 2
{
1+ f 2

mn + f 2
mn	

2
mn�xk� yk�

2+ 	2
mn�xk� yk�

}
� (30)

According to the fixed-points theory, the kinetic energy at these
two roots must be equal regardless of the damping in the neutralizer.
This occurs when either Eq. (23) or (24) is satisfied. For simplification,
Eq. (24) is used and substituting the two roots,

�mn

∣∣
�k=� =

{
1

gmn1gmn2�1+ 	2
mn�xk� yk��− 1

}2

(31)

or √
�m
∣∣
�k=� = ± 1

gm1gm2�1+ 	2
mn�xk� yk��− 1

� (32)

However, the two equations in Eq. (32) must be the same according to
the fixed-points theory and therefore

1

g2mn1�1+ 	2
mn�xk� yk��− 1

= −1

g2mn2�1+ 	2
mn�xk� yk��− 1

(33)

or

g2mn1 + g2mn2 =
2

1+ 	2
mn�xk� yk�

� (34)

Comparing Eqs. (30) and (34), the optimum tuning condition, which is
the desirable tuning ratio, is obtained when

fmn opt =
1

1+ 	2
mn�xk� yk�

(35)

This has a similar form with the optimum tuning condition for the
simple primary system given by den Hartog (1956), with an additional
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Derivation of the Fixed-Points Theory 57

term which is the modal amplitude of the structure at the neutralizer’s
location, 	2

mn�xk� yk�. This implies the importance of the positioning of
the control device on the structure.

Substituting Eq. (35) into (28) gives the abscissas of the fixed points
in �g� ��m�n�� diagram as

g1�2 =

√√√√1±
√

	2
mn�xk�yk�

2+	2
mn�xk�yk�

1+ 	2
mn�xk� yk�

(36)

while the common ordinate (the height of the fixed points) is

��mn� = 1+ 2
	2

mn�xk� yk�
� (37)

which can be derived by substituting Eq. (36) into (32).
The next task is to derive the optimum damping of the vibration

neutralizer. From Eq. (21), the neutralizer’s damping ratio can be
written as

�2k =
[
g2mn − f 2

mn

]2 − �mn

[
	2

mn�xk� yk�f
2
mng

2
mn − �g2mn − 1��g2mn − f 2

mn�
]2

4f 2
mng

2
mn

[
�mn�g

2
mn − 1+ 	2

mn�xk� yk�g
2
mn�

2 − 1
] �

(38)

Suppose the two fixed points on the nondimensional kinetic energy curve
are P and Q. In order for the curve to pass horizontally through the
first fixed point P, it is required that it passes through a point P ′ of the
abscissa

g1 =

√√√√1−
√

	2
mn�xk�yk�

2+	2
mn�xk�yk�

+ �

1+ 	2
mn�xk� yk�

(39)

with the ordinate given in Eq. (37). If � approaches zero as a limit,
substituting Eqs. (35), (37), and (39) into (38) will give result in the
form of

�2k =
�Ao + A1�+ A2�

2 + A3�
3 + · · · �

�Bo + B1�+ B2�
2 + B3�

3 + · · · � � (40)

If � = 0, then the nondimensional kinetic energy curve lies on the fixed
point and �k is assumed to be indeterminate because it can take infinite
number of values. Therefore, Ao = Bo. If � is not zero but has a very
small value, other terms in Eq. (40) that were multiplied with � of power
higher than unity can be neglected, leaving only

�2k =
A1

B1

� (41)
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58 Dayou and Wang

Therefore, substituting Eqs. (35), (37), and (39) into (38), and taking only
the terms that were multiplied with � gives, after rearrangement

�2k1 =
	2

mn�xk� yk�
[
3−

√
	2

mn�xk�yk�

2+	2
mn�xk�yk�

]
8�1+ 	2

mn�xk� yk��
� (42)

Following a similar procedure for g2, one will obtain

�2k2 =
	2

mn�xk� yk�
[
3+

√
	2

mn�xk�yk�

2+	2
mn�xk�yk�

]
8�1+ 	2

mn�xk� yk��
(43)

for a horizontal tangent at point Q. It was suggested to take the average
of these two dampings as the optimal value, which is given by

�k opt =
√

3	2
mn�xk� yk�

8�1+ 	2
mn�xk� yk��

� (44)

NUMERICAL SIMULATION AND DISCUSSION

The optimum tuning and damping ratio of the vibration neutralizer for
global control of a structure with closely spaced natural frequencies has
been derived in the previous section. The main assumption is that the
response of the structure in the vicinity of the natural frequency can
be approximated by its corresponding mode. With such an assumption,
the derivation was simply carried out by following the conventional
fixed-points theory without any concern about its applicability. In this
section, a series of simulations are presented and from these results, the
applicability of the theory is then judged.

The effects of the optimal device on the kinetic energy of the
structure in the vicinity of the natural frequency are simulated for
three cases. These are when the natural frequencies are (a) relatively
large-spaced; (b) relatively close-spaced, and (c) almost overlapping to
each other. In the first case, although the natural frequencies are said
to be “relatively large-spaced,” in principle they are closely spaced
according to common understanding, for example in comparison with
the investigation carried out by Dayou (2005, 2006) and Dayou and
Wang (2004).

The structure being considered in this paper is a simply supported
plate. This type of structure is an ideal approximation to many engineering
applications and the control of its vibration is an important issue
especially for the precise operation performances in aerospace systems,
satellites, flexible manipulators, etc. (Benassi and Elliott, 2005a,b). In
this investigation, a plate with the dimensions of 2m × 0�6m × 0�007m,
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Derivation of the Fixed-Points Theory 59

Table 1. Natural frequencies of the plate with corresponding m and n indexes
and the location of the maximum deflection in x and y axis

Naturale
Mode frequency
no. (Hz) m, (maximum deflection) n, (maximum deflection)

1 52 (1), �0�5Lx� (1), �0�5Ly�
2 64 (2), �0�25Lx� 0�75Lx� (1), �0�5Ly�
3 86 (3), �Lx/6� 0�5Lx� 5Lx/6� (1), �0�5Ly�
4 115 (4), �0�125Lx� 0�375Lx, (1), �0�5Ly�

0�625Lx� 0�875Lx�
5 154 (5), �0�1Lx� 0�3Lx� 0�5Lx, (1), �0�5Ly�

0�7Lx� 0�9Lx�
6 193 (1), �0�5Lx� (2), �0�25Ly� 0�75Ly�
7 201 (6), �Lx/12� 3Lx/12� 5Lx/12, (1), �0�5Ly�

7Lx/12� 9Lx/12� 11Lx/12�
8 206 (2), �0�25Lx� 0�75Lx� (2), �0�25Ly� 0�75Ly�
9 227 (3), �Lx/6� 0�5Lx� 5Lx/6� (2), �0�25Ly� 0�75Ly�

10 256 (7), �Lx/14� 3Lx/14� 5Lx/14, (1), �0�5Ly�
7Lx/14� 9Lx/14,
11Lx/14� 13Lx/14�

11 257 (4), �0�125Lx� 0�375Lx, (2), �0�25Ly� 0�75Ly�
0�625Lx� 0�875Lx�

12 296 (5), �0�1Lx� 0�3Lx� 0�5Lx, (2), �0�25Ly� 0�75Ly�
0�7Lx� 0�9Lx�

and with the following physical properties are used: Material density =
7870kg/m3, Young’s modulus = 207E9Pa, Poisson’s ratio = 0�292, and
modal damping = 0�001. The plate is subjected to unit amplitude of
harmonic point primary force located at �0�1Lx� 0�1Ly� where Lx and
Ly are the length and the width of the plate, respectively. The natural
frequencies of the plate are given in Table 1. Referring to this table,
modes number 1, 2, and 3 were selected for the first case of investigation,
modes 6, 7, and 8 for the second case, and modes 10 and 11 for the
third case, respectively. The numerical simulation results for each case
are described in the following section.

Relatively Large-Spaced Natural Frequencies

The first three modes, which are of concern in this investigation, are
spaced between 12Hz to 22Hz and the fourth mode is 29Hz above the
third mode. Figures 1–3 show the effect of the optimal neutralizer on
the kinetic energy of the plate in the vicinity of the first, second, and
third natural frequency, respectively, when the mass ratio  is changed.
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60 Dayou and Wang

Figure 1. Effects of the optimal vibration neutralizer on the kinetic energy
of the plate. The neutralizer is optimized to the first natural frequency and is
applied at �0�5Lx� 0�5Ly�. (a) Overall kinetic energy and (b) kinetic energy in the
vicinity of the first natural frequency.

The neutralizer is placed at the location with the highest deflection
amplitude, as close to the center of the plate as possible. Otherwise,
the highest deflection point closest to the primary force is selected. In
each figure, the first graph (a) shows the kinetic energy of the plate
up to 300Hz, whereas the second graph (b) shows the kinetic energy
in the vicinity of each natural frequency being considered. The first
graph shows the overall effect of the optimal neutralizer whereas the
second graph is shown for clear visualization of each natural frequency
considered.

Generally, the kinetic energy for each targeted natural frequency
is relatively smooth when the optimal vibration neutralizer is applied.
It can be seen from each figure that no new resonance occurs in
the whole frequency range and this is the desirable result when using
the fixed-points theory. As the neutralizer’s mass increases, the kinetic
energy decreases to a level where the effect of the dominant mode is
removed leaving only the effect from the residual modes. In Fig. 1(b),
for example, with the first natural frequency as the control target,
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Derivation of the Fixed-Points Theory 61

Figure 2. Effects of the optimal vibration neutralizer on the kinetic energy of
the plate where the neutralizer is optimized to the second natural frequency and
is applied at �0�25Lx� 0�5Ly�. (a) Overall kinetic energy and (b) kinetic energy in
the vicinity of the second natural frequency.

the vibrational effect from the first mode is almost removed when  =
0�01. Similar observation is shown in Figs. 2(b) and 3(b) when the control
target is the second and the third natural frequency, respectively.

Besides having a relatively smooth kinetic energy in the vicinity of
the targeted natural frequency, the structure also has a relatively flat
kinetic energy with the application of the optimal vibration neutralizer,
especially for the second and third mode shown in Figs. 2 and 3,
respectively. However, the kinetic energy curves for the first mode in
Fig. 1(a) is skewed where the kinetic energy is higher at the higher
frequency compared to the lower frequency. This is because of the
strong influence from the higher mode, which is the second mode. This
phenomenon is not observed for the second and third modes (Figs. 2
and 3) because they are equally affected by their respective lower and
higher neighboring modes.

It is worthwhile to mention here that after a certain value of the
mass ratio, the kinetic energy curves are no longer smooth. This can be
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62 Dayou and Wang

Figure 3. Kinetic energy of the plate with neutralizer optimized to its third
natural frequency and is applied at �0�5Lx� 0�5Ly�. (a) Overall kinetic energy and
(b) kinetic energy in the vicinity of the third natural frequency.

clearly seen in all figures when  = 0�05. Although no new resonance
appears, the result becomes difficult to predict and therefore, in real
application, the neutralizer’s parameters must be properly selected prior
to its fabrication.

The application of the vibration neutralizer optimized to a specific
mode also has some effects on other modes. For example, for the
neutralizer that was optimized to the first natural frequency shown in
Fig. 1(a), some reductions in kinetic energy at the higher modes, which
are the third and fifth mode, are also observed. For the neutralizer
that was optimized to the second natural frequency [Fig. 2(a)], some
reductions in the kinetic energy can be observed on the first, third, fifth,
and seventh modes, whereas for the neutralizer optimized to the third
natural frequency [Fig. 3(a)], reductions can also be observed on the first
and fifth modes. The reduction of the modes other then the targeted
mode increases as the neutralizer’s mass increases. However, there are
modes where no reductions can be observed in the kinetic energy. For
example, for the graph shown in Fig. 1(a), no reduction is observed on
the second, fourth, sixth mode, and so on. This is because the neutralizer
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Derivation of the Fixed-Points Theory 63

Figure 4. Effects of the neutralizer that was optimized to the sixth natural
frequency on the kinetic energy of the plate. The neutralizer is applied at
�0�5Lx� 0�25Ly�. (a) Overall kinetic energy and (b) kinetic energy in the vicinity
of the sixth natural frequency.

is attached at the location which coincides with the nodal point of the
modes concerned. The same reason applies to Figs. 2(a) and 3(a).

The effect of the neutralizer on the kinetic energy other than at
the targeted mode would be interesting to investigate. However, this is
outside the scope of this paper and therefore is not discussed in detail.
The discussion is focused on the applicability of the theory for global
control of a structure with closely spaced natural frequencies.

Relatively Close-Spaced Natural Frequencies

In the previous section, it has been proven that the fixed-points theory
can be used to determine the optimum tuning and damping ratios of
the neutralizer that may remove the effects of the dominant mode in the
kinetic energy of relatively large-spaced natural frequencies of the plate.
In this section, the use of the theory for relatively close-spaced natural
frequencies is discussed in comparison with the previous application.
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64 Dayou and Wang

Figure 5. Effects of the neutralizer that was optimized to the seventh natural
frequency on the kinetic energy of the plate. The neutralizer is applied at
�5Lx/12� 0�5Ly�. (a) Overall kinetic energy and (b) kinetic energy in the vicinity
of the seventh natural frequency.

For this purpose, modes number six, seven, and eight were chosen where
the frequency spacing is 8Hz (between sixth and seventh) and 5Hz (for
seventh and eighth). Clearly, the selected natural frequencies are very
close to each other.

The kinetic energy of the plate with neutralizer optimized to the
sixth, seventh, and eighth mode is shown in Figs. 4, 5, and 6, respectively.
Compared to the previous case, all of the kinetic energy curves for each
mode are skewed towards their neighboring mode that has higher kinetic
energy. For example, for the sixth mode, the kinetic energy curves are
skewed toward the seventh mode. This is because the kinetic energy of
the seventh mode is higher than the sixth mode. Similar explanation
applies to modes seven and eight.

Although all of the kinetic energy curves are skewed, they are still
smooth and this shows that the theory may also be used for the case
considered. There is no new resonance in the whole frequency range
of interest which is the desirable result when using this theory. As the
neutralizer’s mass increases, the reduction in the kinetic energy also
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Derivation of the Fixed-Points Theory 65

Figure 6. Effect of the neutralizer that was optimized to the eight, natural
frequency on the kinetic energy of the plate. The neutralizer is applied at
�0�25Lx� 0�25Ly�. (a) Overall kinetic energy and (b) kinetic energy in the vicinity
of the eighth natural frequency.

increases as shown in Figs. 4–6. However, after a certain value of
neutralizer mass, the kinetic energy curve becomes less smooth where
the curve is lower when it is close to the targeted natural frequency.
Nevertheless, this does not influence the usefulness of the theory, as the
kinetic energy is greatly reduced in the vicinity of the targeted natural
frequency depending on the neutralizer’s mass.

Almost Overlapping Natural Frequencies

For this case, modes number 10 and 11 were chosen where their natural
frequencies are spaced by only 1Hz. The close ups of the kinetic energy
at and around the natural frequencies are shown in Figs. 7 and 8.
In Fig. 7, when the neutralizer is optimized to the 10th mode and is
placed at �0�25Lx� 0�25Ly� and at a smaller mass ratio, higher reduction
in the kinetic energy can be observed at the natural frequency of the
targeted mode compared to its both sides. As the mass is increased, this
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66 Dayou and Wang

Figure 7. Effects of the neutralizer that was optimized to the tenth natural
frequency on the kinetic energy of the plate. The neutralizer is applied
at �0�25Lx� 0�25Ly� and  = 0�005� 0�0005� 0�00005� 0�000005� 0�0000005, and
0.0000001.

effect disappears where reduction can only be observed along the curve
where the 10th mode dominates (i.e., along the left hand side curve).
Similar effect is seen in Fig. 8 where, as the neutralizer’s mass increases,
reduction can only be seen along the curve where the 11th mode
dominates (i.e., along the right hand side curve). However, in Fig. 8,
at higher neutralizer mass, the kinetic energy at the natural frequency
of the 10th mode increases compared to the kinetic energy without the
control device.

Although the reduction in the kinetic energy is not as high as in
previous cases, the neutralizer still has the ability to remove the effect

Figure 8. Effects of the neutralizer that was optimized to the eleventh natural
frequency on the kinetic energy of the plate. The neutralizer is applied
at �0�375Lx� 0�25Ly� and  = 0�0005� 0�00005� 0�00003� 0�00001� 0�000005, and
0.000003.
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Derivation of the Fixed-Points Theory 67

of the targeted mode. However, the reduction can only be observed
in a narrow range of frequency where a single mode dominates. In
most frequency ranges, the two modes contributed equally to the kinetic
energy of the plate, and therefore it could be quite difficult to make a
single neutralizer very effective at both modes at the same time.

SUMMARY AND CONCLUSION

In this paper, the use of the fixed-points theory was developed and
examined on a structure which has closely-spaced natural frequencies.
The effectiveness of the vibration neutralizer was investigated by means
of some numerical simulations. In general, the theory can be used to
determine the optimum tuning and damping ratios of the vibration
neutralizer that remove the effects from the dominant mode leaving only
the effects from residual modes in the global behavior of the structure.
However, the optimal neutralizer becomes less effective as the spacing
between the natural frequencies gets small.
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