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For vibration testing, discrete types of scanning laser Doppler vibrometer (SLDV) have been
developed and have proven to be very useful. For complex structures, however, SLDV takes
considerable time to scan the surface of structures and require large amounts of data storage. To
overcome these problems, a continuous scan was introduced as an alternative. In this continuous
method, the Chebyshev demodulation (or polynomial) technique and the Hilbert transform approach
have been used for mode shape reconstruction with harmonic excitation. As an alternative, in this
paper, the Hilbert-Huang transform approach is applied to impact excitation cases in terms of a
numerical approach, where the vibration of the tested structure is modeled using impulse response
functions. In order to verify this technique, a clamped-clamped beam was chosen as the test rig in
the numerical simulation and real experiment. This paper shows that with additional innovative
steps of using ideal bandpass filters and nodal point determination in the postprocessing, the
Hilbert—Huang transformation can be used to create a better mode shape reconstruction even in the
impact excitation case. © 2008 American Institute of Physics. [DOI: 10.1063/1.2943416]

I. INTRODUCTION

Vibration phenomena are important considerations in the
design of machines, structures, instruments, and so on. Both
the analysis and measurement of vibration are particularly
important tasks because they should be performed together
for the modeling of a real structure. A good vibration model
has the potential capacity for allowing further engineering
processes such as optimization. Among the many available
measurement devices, the accelerometer is the most widely
used sensor. With accelerometers and excitation such as the
force from impact hammers or electromagnetic shakers, vi-
bration characteristics can be calculated by the modal param-
eter estimation technique.]

Although the accelerometer has good sensitivity espe-
cially in high frequency bands, it has some limitations. Be-
cause of its nature as a contacting device, it can lead to mass
loading especially for the measurement of light structures. If
the structure is heavy, the accelerometer is still suitable but it
cannot be attached to the rotating surface directly. In addi-
tion, for mode shape measurements, many accelerometers
need to be attached in order to measure all spatial points. In
this case, it will take some time to attach the accelerometers.
For hammer roving tests, it also takes a long time to hit every
measurement point.

Because of these limitations, in recent years noncontact
measuring instruments such as laser Doppler vibrometer
(LDV) have been more widely used.? Compared to conven-
tional contact devices, LDV does not suffer from mass load-
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ing effects, and also reduces the setting time of sensors re-
quired for vibration testing.2 These improvements have been
helpful for engineers to shorten measurement time, and en-
hance the spatial accuracy of measurements. LDV is defi-
nitely faster than humans for testing, but when the structure
is more complex, the testing process can still be time
consuming.3

Many applications require spatially dense measurement.
With conventional sensors such as accelerometers and dis-
crete SLDV, the number of measurement points needs to be
quite large in order to cover the whole area of a structure.
This can take a relatively long time and requires a large
storage capacity. As an alternative to the discrete scanning
method, a continuous scanning method is introduced and is
referred to in this paper as a continuous SLDV (CSLDV).

FIG. 1. Clamped-clamped beam with nondimensionalized coordinates and
scan profile.
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FIG. 2. Flowchart of mode shape reconstruction using the Hilbert-Huang
transform approach with scanned data from impact testing including damp-
ing compensation.

CSLDV is able to realize modal parameter estimation with
only one measurement. In terms of a “continuous” scanning
method, many scanning schemes are available, such as the
short linear scan, the circular scan, the conical scan, and the
straight line scan.”™ Specifically, in the sinusoidal scan, the
Chebyshev demodulation has been introduced by Sriram
et al.;’ who have suggested the demodulation technique as a
postprocessing technique to obtain the mode shapes of the
vibrating structure.”” The resultant mode shapes are ap-
proximated as a polynomial form. > ° According to this tech-
nique, approximated functional forms of natural mode
shapes can be obtained based on the assumption of stationary
velocity distribution.

However, because the Chebyshev demodulation tech-
nique is based on discrete Fourier transform analysis, peri-
odicity conditions should be satisfied. Also leakage problems
can degrade the results. In response to these problems, Kang
et al."! suggested an alternative method called the Hilbert
transform approach. Their work investigated the Hilbert
transform for the demodulation of CSLDV output, and the
deflection shape can be measured accurately. For the case of
single frequency excitation, they obtained good experimental
results. However, there was no investigation about the gen-
eral excitation method, in, for example, impact and random
excitation. This is because Hilbert transform alone cannot be
used for the general excitation cases.
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FIG. 3. Flowchart of empirical mode decomposition referred to Fig. 2 with
scanned data from impact testing.

In this paper, Hilbert-Huang transform (HHT)
technology12 is proposed in order to realize the mode shape
reconstruction for general excitation schemes. HHT has
proved to be capable of analyzing nonlinear and nonstation-
ary signals, and has been recently used in speech communi-
cation applications. This algorithm has also been used in a
wide range of diverse fields: geological sciences, fluid dy-
namics, financial predictions, speech analysis, vibration
analysis, and so on. This method is the combination of em-
pirical mode decomposition (EMD) and the Hilbert trans-
form. It can decompose a signal in the frequency-time
domain.'*™" After decomposition, modal responses can be
obtained for the reconstruction of mode shapes using the
Hilbert transform. In order to improve the quality of mode
shape reconstruction, this paper proposes two additional
steps for the postprocessing technique; the ideal bandpass
filter in the EMD process and the instantaneous frequency
for the determination of the nodal points of the structure.
Also included in this paper are the results of the numerical
simulation and real experiment performed for the validation
of this technique.

Il. SYSTEM MODELING
A. Sinusoidal continuous scanning LDVs

CSLDV technology can be used on many types of struc-
tures. However, for simplicity of discussion in this paper, a
one-dimensional (1D) structure is used. Suppose that a 1D
structure is scanned, and the velocity variation of the struc-
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TABLE I. Dimensions and material properties of the clamped-clamped
beam.

Property name Value

Density 7.65%10% kg/m?
Young’s modulus 207 GPa
Width of cross section 30X 1073 m
Thickness of beam 1X1073 m
Length of beam 455%X107 m

ture is statistically stationary. The scanning direction can be
denoted by the coordinate x and the scanning limits are non-
dimensionalized to *1.

In this case, a laser beam reflected by a driving mirror
can be utilized as the measuring sensor, with sensor location
defined as

x(1) = cos(Q), (1)

where () is the laser scanning frequency, which is the same
as the mirror driving frequency.

B. 1D sinusoidal scan with impact excitation

For this case, by applying the modal approach, the time
varying velocity can be derived from the impulse response
function as

9
V(xp1) = 2 Y (0) by (x) b, (x,)
g=1

[
_ Yng g0

nq' sin(w, t — X X,),
mwd,q ( d,q QD) d)q( f)d)q( 0)

g=1
2)

where Q is the number of considering modes; m is the mass;
Y(w) is the structural modal mobility; and ¢,(x,) and ¢,(x;)
denote the couplings of the gth mode shape with the observ-
ing position x,, and the excitation position xy, respectively.
Assuming that the structure is a clamped-clamped beam,
the parameters for the velocity profile are determined, e.g.,
natural frequency w, ,, damped natural frequency w,,, cou-
plings of the gth mode shape, the weighted natural frequen-
cies B,L, the mode shape coefficients o, and so on, as given
in the vibration textbook.'®
= wn,q\/ 1- §2

Wy g

¢,(xy) = cosh B x;— cos Bx,— o (sinh B x;— sin B, x,)

¢,(x,) = cosh B,x, - cos B,x, — a,(sinh B,x, - sin B,x,).
3)

As has been previously mentioned, the scanning limits
are nondimensionalized to be *1; hence, some coordinates
have to be modified for the signal generation17 which are

L
Xp= 5(a+ 1)

Rev. Sci. Instrum. 79, 075103 (2008)

0 0.2 0.4 0.6 0.8 1
time(sec)

FIG. 4. Generated velocity signal for impact excitation with CSLDV.

(cos Qr+1), (4)

L

X,==
22
where a is the nondimensionalized forcing position of the
structure, as shown in Fig. 1. Finally, the velocity signal can
be expressed by combining Egs. (2)-(4).

lll. THE HHT APPROACH FOR CSLDV

The HHT consists of two major steps: EMD and the
Hilbert transform seen in Fig. 2.

A. EMD (Ref. 12)

The EMD procedures decompose the measured velocity
signal into several oscillating components called intrinsic
mode function (c;: IMF). The IMF has been newly intro-
duced by Huang et al. and is defined as a function satisfying
two conditions: (a) in the whole data set, the number of
extrema and the number of zero crossings must either equal
or differ at most by one; (b) at any point, the mean value of
the envelope defined by the local maxima and the envelope
defined by the local minima is zero."> The first condition
ensures the signs of the extrema: the local maxima are al-
ways positive while the local minima are negative.13 For the
second condition, although many researchers have studied
and suggested the appropriate method to implement it, the
recent development of Huang et al. does not include the
implementation of the second condition."*

Kizhner et al. have detailed the algorithm for the EMD
plrocess.14 The run-configuration vector is used in this pro-
cess. This vector consists of several parameters: the sampling
time interval, the maximum number of allowable IMFs, the
maximum allowable number of EMD sifts for one IMF, and
the pattern prediction option. His recently developed algo-
rithm is composed of many steps: (a) EMD algorithm entry
point, (b) EMD sifting process iterative loop entry point, (c)
extend, (d) spline, (e) form the median, (f) form the running
residue, (g) the IMF criteria check, and (h) process comple-
tion criteria check. Details can be found in their paper. From
this point, EMD procedures are explained in detail, as shown
in Fig. 3.
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1. Signal conditioning for EMD

Signal conditioning can enhance the properties of vibra-
tion signals. Therefore it should be done in advance before
signal analysis, as shown by the shaded box in Fig. 3. For the
preliminary step, from the Fourier spectrum of the original
signal, the approximated natural frequencies can be obtained
and then the frequency ranges can be determined in advance.

Bandpass filtering. From the Fourier spectrum of the
original signal, the approximated natural frequencies can be
obtained and then the frequency bands for the filters can be
determined. Yang et al. noted that if the modal frequencies
are high and the signal has a high level of noise, bandpass
filtering can be a good alternative. After filtering the data, the
filtered data will be processed through EMD, and the result-
ing first IMF is more similar to the one of modal responses
of the system.15

2. The IMF criteria check

The number of extrema points in the residue signal
E[ r(t;) ] and the number of its zero crossings Z[ r(t;) ] have
to satisfy the condition as expressed in Eq. (5) below. That is
that the IMF must have more than 3 extrema and the differ-
ence of the number of extrema and zero crossings is not
more than 1.

{E[r(1)]> 3} AND {[E[r(1)] = Z[r(1)]] < 1},
ie{l, - N} (5)

If the residue signal satisfies the condition, the residue signal
will be stored in an IMF matrix and then subtracted from the
original signal. The subtracted signal will be the input signal
of the sifting process iteratively.

3. Process completion criteria check

If the residue signal is not an IMF, it will be checked
again for the exit criteria in Eq. (6). If the number of extrema
is smaller than 4 or the number of IMF reaches the desig-
nated number of IMF in the run-configuration vector, the
sifting process will be finished.

{E[r(#;)] < 3} OR {#IMFs = m}. (6)

In the original EMD process, the sifting process is continued
until that the residue becomes a monotonic function. When
the sifting process is repeated to obtain n IMFs, the resulting
decomposition can be shown as

v(t) =2 ¢+, (7)
Jj=1

where c; is the jth intrinsic mode function and r is the resi-

due. These IMFs, however, contained more than one fre-
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quency component, so they are not modal responses. There-
fore signal conditioning is suggested for the calculation of
modal responses of the original signal. After the sifting steps
including the signal conditioning technique are finished, the
signal will be decomposed with some modal responses, some
IMFs, and residue as expressed in Eq. (8).

m—-n

v(t)%EMj+2 cj+r.

j=1 j=1

(8)

Each modal response M; will be applied with the Hilbert
transform. For a small damping ratio and high natural fre-
quency, the modal properties can be obtained from its modal
responses.

B. The Hilbert transform and its application to CSLDV

The Hilbert transform can be practically applied for en-
gineering purposes. It can determine the damping ratio at
resonances from the impulse response function, and also es-
timate the propagation time from the cross correlation
function.'®

Kang et al." suggested a Hilbert transform based ap-
proach for the measurement of deflection shapes from
scanned data. The CSLDV output is an amplitude-modulated

vibration, thus the deflection shape can be derived from the
envelope and phase of output velocity signals.

If v(¢) is the velocity output of CSLDYV, 0(z) which is the
Hilbert transform of v(z) can be expressed below

o) =H{v(®) }. )

In order to calculate the envelope, an analytic complex
function z() must be introduced,

2() = v(?) + jo (1) = E(1) e/, (10)

then one can get the envelope and the phase presented below.

E(f) = Vo(t) + 52(1)

6(r) = tan™! [ M} )

() (11)

With this information, the deflection mode shape can be plot-
ted. The slope of the phase exhibits abrupt pulses at the node
points, at which points the mode shape changes sign.11
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FIG. 7. Intrinsic mode functions as modal responses with conventional
bandpass filtering (a), IMF and residue with ideal bandpass filtering (b).

IV. IMPROVED APPROACH OF HHT FOR CSLDV
A. Improvement in EMD (Ref. 12)

Yang et al. mentioned the bandpass filtering with an im-
portant note in their work."” They emphasized that the phase
shift of the bandpass filter used should be as small as pos-
sible. In the following section of numerical simulation, the
shifted signal will be discussed.

1. Signal conditioning for EMD

The bandpass filter makes the phase shift. If the signal
has shifted, the resulting mode shape would be distorted be-
cause the coordinate of the mode shape is not matched to the
scanning trajectory.19 Also, the phase of the signal is impor-
tant in order to decide the sign changes at nodal points. With
the bandpass filter, the changes do not occur at the nodal
point, which contribute to additional distortion in the recon-
structed mode shape.

Ideal bandpass ﬁltering.zo In order to improve the qual-
ity of IMFs, the ideal bandpass filter is applied to the
frequency response of the signal in the frequency domain as
a postprocessing technique. The frequency components out-
side the bandpass filter are removed and then the velocity
signal is reconstructed by the inverse Fourier transform.
There will be no phase shift in the signal, unlike the case of
the conventional bandpass filter.

B. Hilbert transform and CSLDV

1. Phase change criteria: the determination
of nodal points

Kang et al."" mentioned the sign of the mode shape as
discussed below. The slope of the instantaneous phase exhib-
its abrupt pulses at the node points, at which points the de-
flection curve changes sign.

Rev. Sci. Instrum. 79, 075103 (2008)

In the fundamentals of the Hilbert transform, the analytic
signal has to be constructed to calculate the envelope and the
phase. If the structure is excited sinusoidally with a certain
mode shape ®(x), the instantaneous frequency can be calcu-
lated from the phase, as described in Egs. (12)-(14).

v(t) = P(x)cos wyt, (12)

6(1) = tan™! {@} =tan™! [M]

v(r) D(x)cos wyt
= tan"'[tan w,t] = wyt, (13)
o) _d _
P dt{ it} = w,. (14)

The abrupt changes in the phase plot become very distin-
guishable in the instantaneous frequency plot which is the
differentiation of the phase. So the locations of sign changes
can be calculated with the instantaneous frequency plot, and
therefore the nodal points can be easily identified.

V. DAMPING COMPENSATION

In practice, for impact excitation, damping is always
present with various magnitudes. In the time domain, the
responses have exponential decay which causes the magni-
tudes of responses to decrease. The decrement of the magni-
tude of responses leads to a decrease in the magnitude of the
envelopes strongly related to the mode shapes. Therefore,
this damping should be compensated for, in order to achieve
a good quality in the reconstruction of mode shapes.

For a special case in which the damping ratio { is very
small and the natural frequency w, is large, Yang et al.”
calculated the damped natural frequency w, from the slope
of the phase 6(z), then obtained the damping ratio from the
slope of the logarithm of envelope with the damped natural
frequency, as described in Egs. (15) and (16).

In E(t) = = {w,t + constant, (15)

w,(t)=— =wy,. (16)

Once we know the damping ratio, the mode shape can be
compensated with the envelope of the response signal in the
time domain, as shown in Eq. (17).

E(1)

E’(t) = e—lwdf .

(17)

VI. NUMERICAL SIMULATION AND RESULTS

For validation of this technique, a clamped-clamped
beam modeled as a continuous system is used, as shown in
Fig. 1 and with required properties given in Table I. With
these system properties, the first three natural frequencies are
considered and calculated: 25.64, 71.21, and 139.57 Hz.

A. Parameters for digital signal processing

In digital signal processing, the required length of the
sampled data is 2% for an efficient fast Fourier transform
where b is a certain integer. In order to obtain coefficients at
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certain frequencies, an appropriate resolution is required in
the frequency range of interest. Here, for convenience, the
sampling frequency is set to 2° Hz for all cases.

B. Modal identification with scanned data
from impact testing

For the numerical simulation of this paper, the impulse
response function is used for generating a velocity profile.
Mode shapes are then reconstructed from the velocity signal
using the HHT approach. The procedure including the damp-
ing compensation is shown in Figs. 2 and 3 in the form of
flowcharts, as previously discussed.

C. Validation of mode shape by using modal
assurance criteria values

To evaluate how well the mode shape is reconstructed,
modal assurance criteria (MAC) is used. This parameter is
defined by

MAC(theory, calculated)

- |{ ¢calc} T{ ¢1heor} | g
({ d)calc}r{ ¢calc}) ({ ¢the0r} T{ ¢lhe0r}) ,

and this is a scalar quantity. This parameter is useful for

(18)

quantifying the degree of correlation between a theoretical
mode shape and a calculated mode shape.l

D. Results
1. For undamped case

Figure 4 shows the generated velocity signal from the
impulse response functions. Signal conditioning techniques
are used to improve the shape of the envelopes. With this
velocity signal, a fourth order Butterworth bandpass filter is
constructed and applied to each natural frequency band of
the velocity signal, as shown in Fig. 5. As Yang et al. '* found
in their work, the time shift which can be thought as a phase
shift, occurs at the beginning of the signal. As mentioned in
Sec. IV A 1, the conventional bandpass filter has a phase-
shifting problem which can confuse the sign determination
and coordinate-trajectory matching. At the same time, the
velocity will undergo the innovative suggestion, which is the
ideal bandpass filter. The filter is applied in the frequency
domain to filter out frequency components other than the
natural frequency of interest, as shown in Fig. 6. For ex-
ample, in Fig. 6(a), the filter is applied to remove f; and f,
leaving f3 and its sidebands, which is the interesting fre-
quency components. The filter is applied over the natural

Downloaded 21 Mar 2009 to 203.237.43.184. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



075103-8 Kyong et al.

Mode #1

Rev. Sci. Instrum. 79, 075103 (2008)

Mode #1

ry»—e/(e’(

—]

Mode #2

0 0

= 05
= 05

.5
.5

0 0

FIG. 9. Comparison between theoreti-
cal mode shapes (-0-) and calculated

! T 0 05
@ Non-dimensionalized length ®)

. Calculated mode shapes
Theoretical mode shapes  (d)

Calculated mode shapes 1
©

frequency and the sidebands, and also to the mirroring com-
ponents. The filtered signal shown at the bottom of Figs.
6(a), 6(c), and 6(e) will undergo the EMD process. As can be
seen in Figs. 6(b), 6(d), and 6(f), the ideal bandpass filter is
free from phase shifting contrary to the conventional band-
pass filter in Figs. 5(b), 5(d), and 5(f).

After taking the HHT of the signal with both filtering
techniques, Butterworth and the ideal, three IMFs are de-
composed from its vibration signal, as shown in Fig. 7, cor-
responding to the three modal responses of the clamped-
clamped beam. The higher frequency components are
decomposed earlier than the lower frequency components
through the EMD process.

The IMFs from the EMD process are used for the mode
shape reconstruction, as shown in Fig. 8. In Figs. 8(a) and
8(b), for example, the figures are presented in the order of
the procedure of the mode shape reconstruction for the first
natural mode. In this figure, the plots on the left represent
processing with the Butterworth filtered signal and those on
the right are from the ideal bandpass filtered signal. The
envelope and the instantaneous frequency can be obtained
from the IMF given at the top of each figure. From the in-
stantaneous frequency plots, abrupt changes can be obtained.
These changes indicate the sign changes in mode shapes at

R 0 0.5
Non-dimensionalized length

mode shapes (-) with conventional
bandpass filter (a), the same as (a)
with the ideal bandpass filter (b),
MAC values of the vibration modes
with bandpass filter (c), the same as
(c) with the ideal bandpass filter (d).

Theoretical mode shapes

the nodal points. By multiplying the envelope and sign
changes, the mode shape can be calculated. From the instan-
taneous plots for both filtering techniques, the phase of the
Butterworth case is shifted and distorted, especially in the
middle, which is the location of the change in scanning di-
rection from forward to backward. From the distortion of the
phase, the sign of the reconstructed mode shape is deter-
mined but is incorrect, while the ideal bandpass case pro-
duces good results for mode shape reconstruction.
According to the results for the second and the third
natural modes listed in Figs. 8(c)—8(f) with the application of
the conventional bandpass filter, the shape of the envelopes
are accurately obtained, but phase shifting leads to poor de-
termination of the sign of the mode shape at the nodal points.
When the mode shape is expressed in the nondimension-
alized domain which is matched with the scanning trajectory,
the phase shifting causes negative effects on the mode shape
reconstruction. With the shifted phase, the mode shape can-
not be reconstructed accurately, as shown in Fig. 9(a). In Fig.
9(c), the MAC values show a poor correlation with the the-
oretical shape. Conversely the use of the ideal bandpass filter
can make the reconstruction very accurate. It can be seen in
Fig. 9(b) that with the ideal bandpass filter, the reconstructed
mode shapes are very similar to the theoretical shapes, and

TABLE II. MAC values of the first three natural modes of a clamped-clamped beam for impact excitation by
using the Hilbert-Huang transform approach with the ideal bandpass filter.

Simulation
Conventional band pass filter Ideal band pass filter
First Second Third First Second Third
First theory 6.24X 107 0414 218X 1073 0.999 1.51x10™ 1.66 X 107*
Second theory 0.959 8.63%X107° 0.521 4.42X107° 0.999 5.09x 1073
Third theory 5.23x1078 0.535 209%X10%  222X10™%*  536%X107 0.999
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FIG. 10. Generated damped velocity

signal (a), IMF, damping compensated

envelope, the instantaneous frequency
and determined sign of the first (b), the

second (c), and the third modal re-

sponses (d), comparison between the-

oretical (-0-) and calculated mode

shapes (-) (e), MAC values of the vi-

bration modes (f). Damping ratios of
each mode are 2%, 1%, and 0.5%.
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therefore the MAC values are almost perfect for each mode,
as shown in Fig. 9(d). Comparisons of the MAC numerical
values in Table II further demonstrates the improvement in
the quality of the mode shape reconstruction resulting from
the application of the ideal bandpass filter.

2. For the damped case

If the structure is damped, the generated damped veloc-
ity is shown in Fig. 10(a). The damping ratios of the first
three modes are 2%, 1%, and 0.5%. After the EMD process
with an ideal bandpass filter, the first three natural modal
responses are calculated. From each modal response, enve-
lopes are obtained then damping is compensated using Eqs.

(15) and (16). After the calculation of the instantaneous fre-
quency, the sign of the mode shape is determined. Figure
10(b)-10(d) show the calculation procedures for the first,
second, and third modal responses. According to Fig. 10(e),
the compensated mode shapes are also similar to the theoret-
ical mode shapes. Also the MAC values are almost perfect,
as shown in Fig. 10(f) and Table IIL

3. For the damped case with noise

In practice, speckle noise is always present in laser
Doppler vibrometry. If the damping is high, the meaningful
components of the vibration can be buried very quickly be-
low the noise floor. By using the same damping ratios given

TABLE III. Comparisons of the damping compensation results with MAC values for the damped case and the

noise case.
Simulation
Damped Damped with noise
First First Second Third First Second Third
First theory 0.999 1.29x10™* 1.53x107* 0.945 5.78% 1073 2.12%1073
Second theory 8.06%107° 0.999 7.75X107° 226X 1072 0.981 8.41x107°
Third theory 1.27X107* 518X 1073 0.999 1.15X1072  7.66X107* 0.963
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in the previous section, the vibration signal is generated, as
shown in Fig. 11(a). After half of the time span, the vibration
components are buried below the noise floor. After the EMD
process, however, the resulting modal responses are well
decomposed and show the vibration modes. In Figs.
11(b)-11(d), the envelopes are obtained with some distortion
at the end of each envelope. Noise causes this distortion but
this can be resolved by spatial averages of mode shapes, as
shown in Figure 11(e). Figure 11(f) and Table IIT also show
good MAC values.

Vil. REAL EXPERIMENT AND RESULTS

For the validation of this technique, a real experiment is
carried out, for which Fig. 12 shows the schematic diagram.
A clamped-clamped beam is tested in this experiment, the
dimensions of which are given in Table I. The beam is
scanned by a mirror which is controlled by a dSPACE con-
troller board using the proportional-integral-derivative con-
trol method. While the laser is scanning the beam, the im-
pulse excitation is given manually. The impact signal is
triggered and acquired with the laser vibrometer’s signal and
the mirror scanning trajectory together, using a National In-
strument data acquisition board and MATLAB. The scanning
frequency is 5 Hz.

Theoretical mode shapes

The vibration data resulting after acquisition using the
mirror scanning trajectory are given in Fig. 13(a). In Fig.
13(a), the real mirror scanning trajectory (solid line) and the
ideal sinusoidal scanning trajectory (dotted line) are shown.
For ideal simulation cases, it is assumed that the laser can
reach both clamped ends of the beam. In the experiment, the
laser scans the inner region of the beam with some margin at
both ends for accurate data acquisition. As a result, the scan
looks shifted and the mode shape looks cut off in Fig. 13(e).

After the EMD process, with the modal responses, the

NI DAQ card
-Data acquisition

Y— dSPACE PC
hammer -PID control
: t
| !
Continuous Scanner controller
Scanner
1
Clamped- +
clamped . Laser
beam vibrometer Schematic
b Diagram

FIG. 12. Schematic diagram for the experiment using the continuous scan-
ning laser Doppler vibrometer.
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envelopes and instantaneous frequencies are obtained, and
then the sign of the mode shapes are calculated, as shown in
Figs. 13(b)-13(d). In Figs. 13(b)-13(d), the envelopes are
more complicated than those in the simulation results. This
complexity of shapes comes from the damping and the noise
effect, as briefly shown in Figs. 11(b)-11(d) for the damped
case with noise. However, this problem can be resolved
through spatial averaging which is performed scan by scan.

Figure 13(e) shows the comparison of mode shapes be-
tween the theoretical and experimental results. In the experi-
ment, the scanning mirror is paused at both ends for a very
short period. However, during this period, the velocity data
are measured. Therefore, mode shapes calculated at both
ends appear to be shifted, and the end is cut off. In spite of
the scanning problems, the mode shapes calculated are rela-

TABLE IV. Validation of the experimental results with MAC values.

Experimental
First First Second Third
First theory 0.935 5.51%x1073 6.03%x1073
Second theory 8.57% 107 0.954 8.93x 1073
Third theory 2.09X 1072 9.02X107* 0.923

08 0.8

Theoretical mode shapes

tively accurate except at both ends. As shown in Fig. 13(f)
and Table IV, the calculated mode shapes are well correlated
to the theoretical mode shapes.

VIil. SUMMARY

The HHT approach has been investigated in this paper
for the reconstruction of the mode shapes of a structure
which has been excited using impact force. For all the cases,
such as undamped, damped, damped with noise, and the real
experiment, it was shown that the HHT approach can give
good demonstrated results in comparison with theory. To fur-
ther improve the mode shapes’ quality, the ideal bandpass
filter and the instantaneous frequency methods were pro-
posed as a postprocessing technique. Visual inspections of
the mode shapes and comparison of their MAC values show
that the improved HHT approach gives the accurate mode
shapes with respect to the theoretical prediction.
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