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Abstract: The fixed-points theory has its root dating back to 1932. Hahnkamm suggested that
there are two fixed points in the undamped primary structure’s frequency response function
(FRF) for the two-degree-of-freedom system when a harmonic force is applied to the primary
mass. These points are independent of the damping value in the auxiliary system, which is the
control system, and their heights are mainly determined by the mass ratio of the device. The
desired optimum value of the tuning ratio is obtained when the heights of the fixed points are
equal. Fourteen years later, Brock suggested that the optimum value of the damping ratio in
the control device can be determined by making the height of the fixed points the maximum.
Since then, the fixed-points theory has been used in many applications as one of the design
laws in fabricating a vibration neutralizer. In this article, the theory is reformulated by using the
conventional definition of the damping ratio. It is proved that the same result can be obtained as
in the original derivation. The application of the theory is then extended to the control of global
vibration of an undamped continuous structure and is demonstrated on a simply supported
beam.

Keywords: global vibration control, kinetic energy, resonance frequency, vibration neutralizer

1 INTRODUCTION

In the early stage of its application, the vibration
neutralizer was normally simply tuned to a partic-
ular frequency of interest without any proper selec-
tion of its resonance frequency and damping value.
However, this situation may excite the two new reso-
nance frequencies of the combined system, making
it more problematic when the excitation frequency
changes [1]. In 1932, Hahnkamm [2] realized that for
a neutralizer with a given resonance frequency, there
are two common points in the frequency response
function (FRF) of the primary system regardless of
its damping value. Following this, he recommended
that the desired value of the neutralizer’s resonance
frequency is that when the heights of these two
common points are equal. However, no remark was
made on the damping value in the vibration neutra-
lizer. This leaves the system with two new resonance
frequencies.

Fourteen years later, Brock [3] devised a math-
ematical method, known as fixed-points theory, to
determine the damping value in the vibration neutra-
lizer that flattens the FRF of the primary structure. This

is the optimum value because it does not excite the
new resonance frequencies of the system. Since then,
the theory has been used as one of the design laws in
fabricating a vibration neutralizer [4].

In this article, the theory is revisited. First, the
theory is discussed using the original approach pro-
posed by Hahnkamm and Brock where the damping
in the secondary system was defined in a different
way. The theory is then derived using the conventional
definition of damping. The application of the theory is
then extended to the case of global vibration control
of beams.

2 FIXED-POINTS THEORY USING THE
ORIGINAL APPROACH

Suppose that an auxiliary spring–mass–damper sys-
tem is attached to an undamped primary structure.
The auxiliary system, widely known as a vibration
neutralizer, is used as a control device to dampen
the movement of the primary system (Fig. 1). Math-
ematically, in the original approach of the fixed-
points theory, the FRF of the primary system, x1, is
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Fig. 1 An auxiliary system, m2, attached to an
undamped problematic primary structure, m1.
The primary system is being forced by a harmonic
force f1

expressed as [2, 3]

x1 = F1(k2 + jωco2 − ω2m2)

(k1 − m1ω
2)(k2 − m2ω

2) − m2k2ω
2

+ jωco2(k1 − m1ω
2 − m2ω

2)

(1)

where F1, k1, k2, m1, m2, ω, j, and co2 are the amplitude
of the excitation force, the spring’s stiffness constant
of the primary system, the spring’s stiffness constant
of the vibration neutralizer, mass of the primary sys-
tem, mass of the vibration neutralizer, frequency of
the excitation force, imaginary number, and damping
value of the vibration neutralizer (secondary system),
respectively. The subscript o in co2 denotes the usage of
the original definition in the fixed-points theory. Here,
the neutralizer’s damping value is defined as

co2 = ζo2coc (2)

where ζo2 and coc are the damping ratio and the critical
damping of the vibration neutralizer, respectively. The
critical damping is defined as

coc = 2m2ω1 (3)

where ω1 is the circular natural frequency of the
primary system given by ω1 = (m1/k1)

1/2. Introduc-
ing μ = m1/m2, the mass ratio; ω2 = (m2/k2)

1/2, the
undamped resonance frequency of the vibration neu-
tralizer; f = ω2/ω1, the tuning ratio; xo = xo1/xst, the
non-dimensional FRF (xst is the static displacement
of the primary system); and g = ω/ω1, the frequency
ratio, equation (1) can be written in terms of the
dimensionless parameter as

|xo| =
√√√√√ (2ζo2g)2 + (g 2 − f 2)2

{[(g 2 − 1 + μg 2)(2ζo2g)]2

+ [μf 2g 2 − (g 2 − 1)(g 2 − f 2)]2}
(4)

Equation (4) has the form of

|xo| =
√

(Aζ 2
o2 + B)

(Cζ 2
o2 + D)

(5)

where

A = (2g)2; B = (g 2 − f 2)2

C = [(g 2 − 1 + μg 2)(2g)]2

D = [μf 2g 2 − (g 2 − 1)(g 2 − f 2)]2

(6)

It can be seen that equation (5) satisfies the exis-
tence of two invariant points based on the fact that the
identity A/C = B/D holds regardless of ζo2 [5].

The two invariant points (or the fixed points) can be
shown on a non-dimensional FRF plot of a simple two
degree of freedom system as in Fig. 2. In this figure,
three FRF plots are shown with different values of ζo2

in comparison with the FRF of the primary structure
alone.The mass of the secondary system is 1 per cent of
the primary system and its natural frequency is made
to coincide with the natural frequency of the primary
system. The zero and infinity values of ζo2 were cho-
sen to represent the extreme cases, whereas the 2 per
cent (ζo2 = 0.02) represents the intermediate case. It
can be seen that the two invariant points P and Q can
be proved to be the same for any value of ζo2.

To determine these invariant points, there are two
extreme conditions to be considered: when the damp-
ing ratio in the vibration neutralizer is zero and when
it is infinity. Mathematically, these two conditions are
written as

|xo|ζo2=0 = B
D

(7)

|xo|ζo2=∞ = A
C

(8)

The condition (B/D)2 = (A/C)2 implies the two
crossing points of curves |xo|ζo2=0 and |xo|ζo2=∞, the
fixed points that are being sought. By using this
crossing point condition, it can be written that

[
(g 2 − f 2)

[μf 2g 2 − (g 2 − 1)(g 2 − f 2)]
]2

=
[

1
(g 2 − 1 + μg 2)

]2

(9)

This can be reduced to a simpler form by taking its
square roots but a ±ve sign must be added to the right-
hand side of the equation. Equation with −ve sign is
the trivial solution; therefore the fixed-points equation
is given by

(g 2 − f 2)

[μf 2g 2 − (g 2 − 1)(g 2 − f 2)] = 1
(g 2 − 1 + μg 2)

(10)
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Fig. 2 Non-dimensional FRF of the primary system showing the existence of the two invariant
points, P and Q. The tuning ratio is unity (f = 1) and μ = 0.01

This leads to

g 4 − 2g 2

(
1 + f 2 + μf

2 + μ

)
+ f 2

(
2

2 + μ

)
= 0 (11)

Equation (11) has two roots, and suppose that g 2
1 and

g 2
2 are the roots, then

(g 2 − g 2
1 )(g 2 − g 2

2 ) = g 4 − (g 2
1 + g 2

2 )g 2 + g 2
1 g 2

2 = 0

(12)

Comparing equations (11) and (12), one obtains

g 2
1 + g 2

2 = 2
(

1 + f 2 + μf
2 + μ

)
(13)

According to the fixed-points theory, the FRF at
these two roots must be equal regardless of the damp-
ing value in the neutralizer. This occurs when either
equation (7) or equation (8) is satisfied. For simplifi-
cation, equation (8) is used and substituting the two
roots yields

|xo|ζo2=∞ =
√

1
[g1,2(1 + μ) − 1]2

(14)

or

|xo|ζo2=∞ = ± 1
[g1,2(1 + μ) − 1]2

(15)

However, the two equations in equation (15) must
be the same according to the fixed-points theory and
therefore

1
[g1,2(1 + μ) − 1] = − 1

[g1,2(1 + μ) − 1] (16)

or

g 2
1 + g 2

2 = 2
2 + μ

(17)

Comparing equations (13) and (17), the optimum
tuning condition, which is the desirable tuning ratio,
is obtained when

fopt = 1
1 + μ

(18)

This optimum condition causes the heights of the
two fixed points to be equal. Substituting equation
(18) into equation (11) gives the abscissas of the fixed
points of the (g , |xo|) diagram as

g1,2 =
√

1 ± √
μ/(2 + μ)

1 + μ
(19)

while the common ordinate is

|xo|g=g1 = |xo|g=g2 =
√

1 + 2
μ

(20)

which can be derived by substituting equation (19)
into equation (15).

The next task is to derive the neutralizer’s optimum
damping ratio ζo2 that flattens the FRF of the main
system. From equation (4), it can be written that

ζo2 = (g 2 − f 2)2 − x2
o[μf 2g 2 − (g 2 − 1)(g 2 − f 2)]2

4g 2[x2
o(g 2 − 1 + μg 2)2 − 1]

(21)

Suppose that the two fixed points are P and Q. In
order that the FRF passes horizontally through the first
fixed point P, it is first required that it pass through a
point P ′ of the abscissa

g1 =
√

1 − √
μ/(2 + μ) + δ

1 + μ
(22)

with the ordinate given in equation (20). Then, let δ

approach zero as a limit. Substituting equations (18),
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Fig. 3 Non-dimensional FRF of the primary system when the tuning and damping ratios of the
neutralizer are optimized, for the original and conventional definitions of damping (dotted
line), in comparison with other values (zero and infinity). μ = 0.01

(20), and (22) into equation (21), one will get a result
in the form of

ζ 2
o2 = Ao + A1δ + A2δ

2 + A3δ
3 + · · ·

Bo + B1δ + B2δ2 + B3δ3 + · · · (23)

If δ = 0, the FRF curve lies on the fixed points and
ζ02 is assumed to be indeterminate because it can take
infinity value. Therefore, Ao = Bo = 0. If δ is not zero
but has a very small value, other terms in equation (23)
that were multiplied with δ of power higher than unity
can be neglected, leaving only

δ2
o2 = A1

B1
(24)

Therefore, substituting equations (18), (20), and (22)
into equation (21) and taking only the terms that are
multiplied with δ give after rearrangement

δ2
o2 = μ

[
3 − √

μ/(2 + μ)

8(1 + μ)3

]
(25)

Following a similar procedure for g2, one will obtain

ζ 2
o2 = μ

[
3 + √

μ/(2 + μ)

8(1 + μ)3

]
(26)

for a horizontal tangent at point Q. It was suggested in
reference [3] to take the average of these two damping
values as the optimum value, which is given by

ζo2opt =
√

3μ

8(1 + μ)3
(27)

With these optimal values of the tuning and damp-
ing ratios, the FRF of the system, in terms of displace-
ment, can be made relatively flat. This is shown in Fig. 3

in the non-dimensional FRF plot of the primary system
with the secondary system fitted to it, where the mass
ratio is kept at 1 per cent, and the tuning and damp-
ing ratios are optimized according to equations (18)
and (27).

Visual inspection of Fig. 3 shows that when the opti-
mum tuning ratio is used, the heights of the crossing
points P and Q are equal, and this is the desired result
according to the fixed-points theory. This result can-
not be achieved when the natural frequency of the
secondary mass is simply made equal to the natural
frequency of the primary system as can be seen in
Fig. 2.

3 FIXED-POINTS THEORY WITH CONVENTIONAL
DAMPING

In the previous section, the fixed-points theory has
been discussed in detail. A method to get the optimum
tuning and damping ratios of the vibration neutral-
izer was presented. However, one has to note that
the definition of the critical damping in the vibration
neutralizer in equation (3) is different from the con-
ventional definition.This is the definition of the critical
damping used in the original fixed-points theory.

The conventional definition of the critical damping
is given by

cc = 2m2ω2 (28)

and therefore the damping ratio of the vibration
neutralizer is

ζ2 = c
2m2ω2

(29)

Note that the subscript o has been removed as the
conventional definition of damping is now being used.
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Using this definition, the non-dimensional FRF of the
primary system is now written as

|x| =
√√√√√ (2ζ2fg)2 + (g 2 − f 2)2

{[(g 2 − 1 + μg 2)(2ζ2fg)]2

+ [μf 2g 2 − (g 2 − 1)(g 2 − f 2)]2}
(30)

This equation can also be written in the form similar
to equation (5) but now with

A = (2fg)2

B = (g 2 − f 2)2

C = [(g 2 − 1 + μg 2)(2fg)]2

D = [μf 2g 2 − (g 2 − 1)(g 2 − f 2)]2

(31)

It can be seen that all the requirements for the
existence of the two invariant points are fulfilled.
Therefore, a similar procedure can be followed to
obtain the optimum tuning and damping ratios of the
neutralizer and this is discussed in the following.

Comparison between Equations (5) and (31) shows
that they are identical except in A and C where an addi-
tional term f appears in equation (31). However, the
additional term cancels out each other in equation (8)
and therefore does not alter the procedure in deter-
mining the optimal tuning ratio. As a result, the same
optimal value for the tuning ratio is obtained as in
equation (18). The abscissa and common ordinate also
remain the same: respectively

g1,2 =
√

1 ± √
μ/(2 + μ)

1 + μ
(32)

|x|g=g1 = |x|g=g2 =
√

1 + 2
μ

(33)

From equation (30), the damping ratio can be
written as

ζ 2
2 = (g 2 − f 2)2 − x2[μf 2g 2 − (g 2 − 1)(g 2 − f 2)]2

4f 2g 2[x2(g 2 − 1 + μg 2)2 − 1]
(34)

By using equation (22) and making δ to approach
zero as a limit, it can be written that the damping ratio
takes a similar form as in equation (23), which is

ζ 2
2 = Ao + A1δ + A2δ

2 + A3δ
3 + · · ·

Bo + B1δ + B2δ2 + B3δ3 + · · · (35)

Using the same argument as before, this equation
simplifies to

ζ 2
2 = A1

B1
(36)

Substituting equations (18), (32), and (33) into
equation (34) leads to

ζ 2
2 = μ

[
3 − √

μ/(2 + μ)

8(1 + μ)

]
(37)

and

ζ 2
2 = μ

[
3 + √

μ/(2 + μ)

8(1 + μ)

]
(38)

respectively. Taking the average of these two values
gives the optimum value of the neutralizer’s damping
ratio as

ζ2opt =
√

3μ

8(1 + μ)
(39)

The optimum value of the tuning ratio obtained
from the two different methods was proved to be
the same. However, the optimum value of the damp-
ing ratio was found to be different. This is because
of the difference in definition of the damping in the
vibration neutralizer. Even then, the desired FRF of
the system remains the same as shown in Fig. 3.
It can be seen that the optimized FRF using the
conventional definition overlaps the FRF using the
original definition of the neutralizer’s damping terms
indicating similar performance.

4 APPLICATION OF THE FIXED-POINTS THEORY
TO GLOBAL VIBRATION CONTROL

The kinetic energy of a continuous structure, as a mea-
sure of the global vibration of the structure, is written
as [6]

KE = Msω
2

4
(qHq) (40)

where Ms, ω, and q are the mass of the structure,
the circular frequency of the excitation force, and
the vector of the modal amplitude, respectively. The
superscript H denotes the Hermitian transpose. For a
structure with a well-separated natural frequency, the
kinetic energy in the vicinity of the natural frequency
can be well approximated by [7]

KEm = Msω
2

4
(q∗

mqm) (41)

where qm is the mth mode of the modal amplitude
given by

qm = Amgm

1 + KkAmϕ2
m(xk)

(42)

Here Am, gpm, Kk , ϕm(xk), and xk are the mth
mode of the complex modal amplitude, the genera-
lized primary force in its mth mode, the neutralizer’s
dynamic stiffness, the mth mode of the mode shape
of the structure, and the neutralizer’s location on the
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structure, respectively. The superscript ∗ denotes the
complex conjugate.

To simplify the problem, a simply supported beam is
selected as a primary structure, and for an undamped
beam, the complex modal amplitude is

Am = 1
km − Msω2

(43)

while the dynamic stiffness of the neutralizer is

Kk = −Mkω
2

(
kk + j2ζk

√
MkKkω

kk − Mkω2 + j2ζk
√

MkKkω

)
(44)

respectively. kk , Mk , and ζk are the stiffness constant,
mass and damping ratio of the neutralizer. km in
equation (43) is the mth effective bending stiffness of
the beam given by

km = (mπ)4

(
El
L3

)
(45)

where E , I , and L are the Young’s modulus, moment
inertia, and the length of the beam, respectively. Note
that the conventional definition of the damping ratio
of the neutralizer is used, which is given by

ζk = c
2mkωk

(46)

where ωk is the neutralizer’s resonance frequency
given by ωk = (mk/kk)

1/2. Therefore, equation (41)
becomes after rearrangement

qm = gpm[(j2ζk

√
Mkkkω) + (kk − Mkω

2)]
{(j2ζk

√
Mkkkω)(km − Msω

2 − Mkω
2ϕ2

m(xk))

+ [(km − Msω
2)(kk − Mkω

2)

− MkKkω
2ϕ2

m(xk)]}
(47)

Taking

μ = Mk

Ms
, fm = ωk

ωm
, and gm = ω

ωm
(48)

and substituting equation (47) into equation (41) give
after rearrangement

γm = (Aζ 2
k + B)

(Cζ 2
k + D)

(49)

where

γm = KEm

(
4m4π4EI

MsL3ω2g 2
pm

)

A = (2fmgm)2

B = (g 2
m − f 2

m)2

C = [(g 2
m − 1 + μg 2

mϕ2
m(xk))(2fmgm)]2

D = [μf 2
mg 2

mϕ2
m(xk) − (g 2

m − 1)(g 2
m − f 2

m)]2

(50)

This is the non-dimensional kinetic energy of
the beam. It can be seen that equation (49) has a
similar form as the non-dimensional displacement
in equation (31) for the simple primary system. There-
fore, all the requirements for the existence of fixed
points are fulfilled. This implies that a similar proce-
dure can be used to determine the optimum tuning
and damping ratios of the neutralizer that flatten the
non-dimensional kinetic energy of the beam. By fol-
lowing a similar procedure, the optimal tuning ratio of
the neutralizer is found to be

fmopt = 1
1 + μϕ2

m(xk)
(51)

The abscissa and common ordinate are respectively

gm1,2 =
√

1 ± √[μϕ2
m(xk)]/[2 + μϕ2

m(xk)]
1 + μϕ2

m(xk)
(52)

γm|g=g1 = γm|g=g2 = 1 + 2
μϕ2

m(xk)
(53)

The damping ratio in equation (49) can be
expressed as

ζ 2
k =

(g 2
m − f 2

m)2 − γm[μϕ2
m(xk)f 2

mg 2
m

− (g 2
m − 1)(g 2

m − f 2
m)]

4f 2
mg 2

m[γm(g 2
m − 1 + μϕg 2

m(xk)g 2
m) − 1] (54)

Again, suppose that the two fixed points on the non-
dimensional kinetic energy curve are P and Q. In order
that the curve passes horizontally through the first
fixed point P, it is required that it pass through a point
P ′ of the abscissa

gm1 =
√

1 − √[μϕ2
m(xk)]/[2 + μϕ2

m(xk)] + δ

1 + μϕ2
m(xk)

(55)

with the ordinate given in equation (53). Then, let δ

approach zero as a limit. Substituting equations (51),
(53), and (55) into equation (54) gives a result in the
form of

ζ 2
k = Ao + A1δ + A2δ

2 + A3δ
3 + · · ·

Bo + B1δ + B2δ2 + B3δ3 + · · · (56)

The same procedure as in the previous section can
be followed, which gives the damping ratio as

ζ 2
k = μϕ2

m(xk)

⎡
⎣
√

3 − √[μϕ2
m(xk)]/[2 + μϕ2

m(xk)]
8[1 + μϕ2

m(xk)]

⎤
⎦
(57)
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Fig. 4 Effects on the kinetic energy of a beam with the application of the optimized vibration
neutralizer. Solid bold – no control; solid – ζk = ∞; dashed dotted – ζk = 0; dashed line –
ζk = optimum. xk = 0.5L, and the control target is the first natural frequency of the beam
(15 Hz)

Similarly, the non-dimensional kinetic energy curve
passes horizontally through the point Q when the
damping ratio is given by

ζ 2
k = μϕ2

m(xk)

⎡
⎣
√

3 + √[μϕ2
m(xk)]/[2 + μϕ2

m(xk)]
8[1 + μϕ2

m(xk)]

⎤
⎦
(58)

In turn, the optimal damping ratio of the neu-
tralizer can be found by taking the average between
equations (57) and (58), which is

ζkopt =
[

3μϕ2
m(xk)

8(1 + μϕ2
m(xk))

]
(59)

To visualize the performance of the optimized tun-
ing and damping ratios of a vibration neutralizer on
global vibration of a structure, a numerical simula-
tion of the kinetic energy of a simply supported beam
with an optimized neutralizer fitted to it was carried
out. The beam has the following properties: physical
dimensions of 1 m × 0.0381 m × 0.006 35 m; material
density 7870 kg/m3 and Young’s modulus 207 GN/m2,
and unity amplitude of a primary point force is applied
at 0.1L (xf = 0.1L) with a neutralizer fitted at xk =
0.5L. Figure 4 shows the total kinetic energy of the
beam contributed from the first ten modes in its first
natural frequency. The solid boldface line represents
the uncontrolled beam. As in the previous section, it
can be seen that invariant points (P ′ and Q′) exist that
are the crossing points of the beam’s kinetic energy
of all values of the neutralizer’s damping ratio. The
interesting fact here is that the global behaviour of
the beam, which is the kinetic energy, is almost flat

when the tuning and damping ratios of the neutralizer
are optimized. This is shown by the dashed line in the
figure. This shows that the fixed-points theory can also
be used to flatten the global response of a continuous
structure such as beams.

5 CONCLUSION

In this article, the original fixed-points theory has
been first reviewed. The original theory uses a different
definition of the damping value in the vibration neu-
tralizer. It was found that using a similar procedure, the
same value of the neutralizer’s optimal tuning ratio
can be obtained even if the conventional definition
of the neutralizer’s damping value is used. However,
the value of the optimal damping ratio is found to be
different. Nevertheless, they result in similar perfor-
mance. The theory was then used to determine the
optimum tuning and damping ratios of the neutral-
izer for the case of global vibration control of a simply
supported beam. It was shown that the theory can also
be used to flatten the global response of a continuous
structure such as beams.
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APPENDIX

Notation

Am the mth mode of the complex modal
amplitude

cc critical damping of the vibration neutralizer
in the conventional definition

coc critical damping of the vibration neutralizer
in its original definition

co2 damping value of the vibration neutralizer
in its original definition

c2 damping value of the vibration neutralizer
in the conventional definition

f tuning ratio
fopt optimum tuning frequency
F1 amplitude of the excitation force
g frequency ratio
gpm the generalized primary force in its mth

mode acting on the host structure
H Hermitian transpose
I moment inertia of the beam
j imaginary number
kk stiffness constant of the vibration

neutralizer on a continuous structure
km the mth effective bending stiffness of the

beam on a continuous structure

k1 the spring’s stiffness constant of the
primary system

k2 the spring’s stiffness constant of the
secondary system

Kk the neutralizer’s dynamic stiffness on a
continuous structure

KE kinetic energy of the host structure
L length of the beam
m1 mass of the primary system
m2 mass of the secondary system
Mk mass of the vibration neutralizer on a

continuous structure
Ms mass of the host structure
q vector of the modal amplitude
qm the mth mode of the modal amplitude

of the host structure
xf location of the excitation force on the

host structure
xk the neutralizer’s location on the host

structure
xo non-dimensional frequency response

function
xo1 displacement amplitude of the primary

system
xst static displacement of the primary system
x1 FRF of the primary system
Y Young’s modulus of the beam

γm non-dimensional kinetic energy of
the beam

ζk damping ratio of the neutralizer on a
continuous structure

ζo2 damping of the vibration neutralizer in
its original definition

ζo2opt optimum damping of the vibration
neutralizer in its original definition

ζ2 damping of the vibration neutralizer in the
conventional definition

ζ2opt optimum damping of the vibration
neutralizer in the conventional definition

μ mass ratio
ϕm the mth mode of the mode shape of the

host structure
ω circular frequency of the excitation force
ωk the neutralizer’s resonance frequency on

a continuous structure
ω1 circular natural frequency of the primary

system
ω2 undamped resonance frequency of the

vibration neutralizer

Proc. IMechE Vol. 224 Part C: J. Mechanical Engineering Science JMES1895


